【題目】如圖,已知∠BAC=60° ,B=80° ,DE垂直平分ACBC于點(diǎn)D,AC于點(diǎn)E.

(1)求∠BAD的度數(shù);

(2)AB=10,BC=12,ABD的周長.

【答案】(1)20°;(2)22.

【解析】試題分析:(1)根據(jù)三角形內(nèi)角和定理求出C,根據(jù)線段垂直平分線的性質(zhì)得到DA=DC,求出DAC,計(jì)算即可;

(2)根據(jù)DA=DC,三角形的周長公式計(jì)算.

解:(1)∵∠BAC=60°,B=80°,

∴∠C=180°-BAC-B=180°-60°-80°=40°,

DE垂直平分AC,DA=DC.

∴∠DAC=C=40°,

∴∠BAD=60°-40°=20°.

(2)DE垂直平分AC,

AD=CD,

AB+AD+BD=AB+CD+BD=AB+BC=10+12=22,

∴△ABD的周長為22.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A﹣1,0),B50)兩點(diǎn),直線y=﹣x+3y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)Px軸上方的拋物線上一動點(diǎn),過點(diǎn)PPF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)若PE=5EF,求m的值;

3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對稱點(diǎn)、是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,B=60°,BC=2,A′B′C′可以由ABC繞點(diǎn)C順時針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且AB′A′在同一條直線上,則AA′的長為( 。

A. 4 B. 6 C. 3 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個工程隊(duì)原定在10天內(nèi)至少要挖掘600m3的土方,在前兩天共完成了120m3后,又要求提前2天完成挖掘任務(wù),問以后幾天內(nèi),平均每天至少要挖掘多少土方?(用不等式解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體底面是長為2cm 寬為1cm的長方形,其高為8cm.

(1)如果用一根細(xì)線從點(diǎn)A開始經(jīng)過4個側(cè)面纏繞一圈到達(dá)點(diǎn)B,請利用側(cè)面展開圖計(jì)算所用細(xì)線最短需要多少?

(2)如果從點(diǎn)A開始經(jīng)過4個側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點(diǎn)DF分別在線段BCAB上,∠EFB=60°DC=EF

1)求證:四邊形EFCD是平行四邊形;

2)若BF=EF,求證:AE=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中不能用公式法分解因式的是( )
A.x2﹣6x+9
B.﹣x2+y2
C.x2+2x+4
D.﹣x2+2xy﹣y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)測試中,某班50名學(xué)生的成績分為六組,第一組到第四組的頻數(shù)分別為6,8,9,12,第五組的頻率是0.2,則第六組的頻數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

同步練習(xí)冊答案