【題目】直線y=-x-1與反比例函數(shù)x<0的圖象交于點(diǎn)A,與x軸相交于點(diǎn)B,過點(diǎn)B作x軸垂線交雙曲線于點(diǎn)C,若AB=AC,則k的值為( )

A-2 B-4 C-6 D-8

【答案】B

【解析】

試題解析:過A作ADBC于D,如圖,

對(duì)于y=-x-1,令y=0,則-x-1=0,解得x=-2,

B點(diǎn)坐標(biāo)為-2,0,

CBx軸,

C點(diǎn)的橫坐標(biāo)為-2,

對(duì)于y=,令x=-2,則y=-

C點(diǎn)坐標(biāo)為-2,-,

AC=AB,ADBC,

DC=DB,

D點(diǎn)坐標(biāo)為-2,-

A點(diǎn)的縱坐標(biāo)為-,

而點(diǎn)A在函數(shù)y=的圖象上,

把y=-代入y=得x=-4,

點(diǎn)A的坐標(biāo)為-4,-,

把A-4,-代入y=-x-1得-=-×-4-1,

k=-4

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB上側(cè)任作一個(gè)∠COD,使∠COD90°.

1)如圖1,過點(diǎn)O作射線OE,使OE是∠AOD的角平分線,求證:∠BOD2COE;

2)如圖2,過點(diǎn)O作射線OE,使OC是∠AOE的角平分線,另作射線OF,使OF是∠COD的平分線,若∠EOC3EOF,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊長(zhǎng)、寬、高分別為6cm、4cm、3cm的長(zhǎng)方體木塊,一只螞蟻要從長(zhǎng)方體木塊的一個(gè)頂點(diǎn)A處,沿著長(zhǎng)方體的表面到長(zhǎng)方體上和A相對(duì)的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長(zhǎng)是( )

A. cm B. cm C. cm D. 9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年國慶后,許多高校均投放了使用手機(jī)就可隨時(shí)用的共享單車。某運(yùn)營(yíng)商為提高其經(jīng)營(yíng)的A品牌共享單車的市場(chǎng)占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi)。具體收費(fèi)標(biāo)準(zhǔn)如下:

同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

1)寫出a、b的值。

2)已知該校有5100名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元。試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營(yíng)商在該校投放A品牌共享單車能否獲利?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 的面積為 63D BC 上的一點(diǎn),且 BDBC23, DEAC AB 于點(diǎn) E,延長(zhǎng) DE F,使 FEED21.連結(jié) CF AB 點(diǎn)于 G

(1)求△BDE 的面積;

(2)的值;

(3)求△ACG 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng):第一次將點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1,第2次將點(diǎn)A1向右平移6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2,第3次將點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3則第6次移動(dòng)到點(diǎn)A6時(shí),點(diǎn)A6在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)是_____;按照這種規(guī)律移動(dòng)下去,至少移動(dòng)_____次后該點(diǎn)到原點(diǎn)的距離不小于41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:數(shù)學(xué)課上,老師出示了這祥一個(gè)問題:

如圖,在正方形ABCD中,點(diǎn)FAB上,點(diǎn)EBC延長(zhǎng)線上。且AF=CE,連接EF,過點(diǎn)DDHFE于點(diǎn)H,連接CH并延長(zhǎng)交BD于點(diǎn)0,∠BFE=75°.的值.某學(xué)習(xí)小組的同學(xué)經(jīng)過思考,交流了自己的想法:

小柏:通過觀察和度量,發(fā)現(xiàn)點(diǎn)H是線段EF的中點(diǎn)。

小吉:BFE=75°,說明圖形中隱含著特殊角

小亮:通過觀察和度量,發(fā)現(xiàn)COBD”

小剛:題目中的條件是連接CH并延長(zhǎng)交BD于點(diǎn)O,所以CO平分∠BCD不是己知條件。不能由三線合一得到COBD”;

小杰:利用中點(diǎn)作輔助線,直接或通過三角形全等,就能證出COBD,從而得到結(jié)論……;

老師:延長(zhǎng)DHBC于點(diǎn)G,若刪除∠BFB=75°,保留原題其余條件,取AD中點(diǎn)M,連接MH,如果給出ABMH的值。那么可以求出GE的長(zhǎng)度”.

請(qǐng)回答:(1)證明FH=EH;

(2)的值;

(3)AB=4.MH=,則GE的長(zhǎng)度為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,發(fā)現(xiàn)進(jìn)價(jià)為40元的某童裝每月的銷售量y(件)與售價(jià)x(元)滿足一次函數(shù)關(guān)系,且相關(guān)信息如下:

售價(jià)x(元)

60

70

80

90

……

銷售量y(件)

280

260

240

220

……

1)求這個(gè)一次函數(shù)關(guān)系式;

2)售價(jià)為多少元時(shí),當(dāng)月的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:將一副直角三角板(Rt△ABCRt△DEF)按圖1所示的方式擺放,其中∠ACB=90°CA=CB,∠FDE=90°OAB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OMON的數(shù)量關(guān)系,并說明理由.

探究展示:小宇同學(xué)展示出如下正確的解法:

解:OM=ON,證明如下:

連接CO,則COAB邊上中線,

∵CA=CB∴CO∠ACB的角平分線.(依據(jù)1

∵OM⊥AC,ON⊥BC∴OM=ON.(依據(jù)2

反思交流:

1)上述證明過程中的依據(jù)1”依據(jù)2”分別是指:

依據(jù)1

依據(jù)2

2)你有與小宇不同的思考方法嗎?請(qǐng)寫出你的證明過程.

拓展延伸:

3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,FD的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案