【題目】如圖:在正方形網(wǎng)格中有一個△ABC,按要求進行下列作圖(只能借助于網(wǎng)格).
(1)畫出△ABC中BC邊上的高AH和BC邊上的中線AD.
(2)畫出將△ABC向右平移5格又向上平移3格后的△A′B′C′.
(3)△ABC的面積為 .
(4)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與直線相交于點,且點的縱坐標為,直線交軸于點將直線向上平移個單位得直線,交軸于點,交直線于點且點的橫坐標為
(1)求直線的解析式;
(2)連接求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為銳角三角形ABC的外心,四邊形OCDE為正方形,其中E點在△ABC的外部,判斷下列敘述何者正確( )
A.O是△AEB的外心,O是△AED的外心
B.O是△AEB的外心,O不是△AED的外心
C.O不是△AEB的外心,O是△AED的外心
D.O不是△AEB的外心,O不是△AED的外心
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為( 。
A.115°
B.120°
C.130°
D.140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠MON=40°,OE平分∠MON,A,B,C分別是射線OM,OE,ON上的動點(A,B,C不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.
(1)如圖①,若AB∥ON,則
①∠ABO的度數(shù)是________.
②當∠BAD=∠ABD時,x=________;當∠BAD=∠BDA時,x=________.
(2)如圖②,若AB⊥OM,則是否存在這樣的x值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過點C,點 A,B 在直線 L 同側(cè),BD⊥L, AE⊥L,垂足分別為D,E
求證:△AEC≌△CDB
(2)類比探究:如圖 2,Rt△ABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點 A 逆時針旋轉(zhuǎn) 90°至 AB’, 連接B’C,求△AB’C 的面積
(3)拓展提升:如圖 3,等邊△EBC 中,EC=BC=3cm,點 O 在 BC 上且 OC=2cm,動點 P 從點 E 沿射線EC 以 1cm/s 速度運動,連接 OP,將線段 OP 繞點O 逆時針旋轉(zhuǎn) 120°得到線段 OF,設(shè)點 P 運動的時間為t 秒。
當t= 秒時,OF∥ED
若要使點F 恰好落在射線EB 上,求點P 運動的時間t
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論有_____填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC中,A(1,0),C(0,2),雙曲線y= (0<k<2)的圖象分別交AB,CB于點E,F(xiàn),連接OE,OF,EF,S△OEF=2S△BEF , 則k值為( )
A.
B.1
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究同一平面直角坐標系中系數(shù)互為倒數(shù)的正、反比例函數(shù)y= x與y= (k≠0)的圖象性質(zhì).
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y= x與y= ,當k>0時的圖象性質(zhì)進行了探究.
下面是小明的探究過程:
(1)如圖所示,設(shè)函數(shù)y= x與y= 圖象的交點為A,B,已知A點的坐標為(﹣k,﹣1),則B點的坐標為;
(2)若點P為第一象限內(nèi)雙曲線上不同于點B的任意一點.
①設(shè)直線PA交x軸于點M,直線PB交x軸于點N.求證:PM=PN.
證明過程如下,設(shè)P(m, ),直線PA的解析式為y=ax+b(a≠0).
則 ,
解得
∴直線PA的解析式為
請你把上面的解答過程補充完整,并完成剩余的證明.
②當P點坐標為(1,k)(k≠1)時,判斷△PAB的形狀,并用k表示出△PAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com