【題目】有這樣一個問題:探究同一平面直角坐標系中系數(shù)互為倒數(shù)的正、反比例函數(shù)y= x與y= (k≠0)的圖象性質(zhì).
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y= x與y= ,當k>0時的圖象性質(zhì)進行了探究.
下面是小明的探究過程:
(1)如圖所示,設(shè)函數(shù)y= x與y= 圖象的交點為A,B,已知A點的坐標為(﹣k,﹣1),則B點的坐標為;
(2)若點P為第一象限內(nèi)雙曲線上不同于點B的任意一點.
①設(shè)直線PA交x軸于點M,直線PB交x軸于點N.求證:PM=PN.
證明過程如下,設(shè)P(m, ),直線PA的解析式為y=ax+b(a≠0).
則 ,
解得
∴直線PA的解析式為
請你把上面的解答過程補充完整,并完成剩余的證明.
②當P點坐標為(1,k)(k≠1)時,判斷△PAB的形狀,并用k表示出△PAB的面積.
【答案】
(1)(k,1)
(2)
②解:由①可知,在△PMN中,PM=PN,
∴△PMN為等腰三角形,且MH=HN=k.
當P點坐標為(1,k)時,PH=k,
∴MH=HN=PH,
∴∠PMH=∠MPH=45°,∠PNH=∠NPH=45°,
∴∠MPN=90°,即∠APB=90°,
∴△PAB為直角三角形.
當k>1時,如圖1,
S△PAB=S△PMN﹣S△OBN+S△OAM,
= MNPH﹣ ONyB+ OM|yA|,
= ×2k×k﹣ (k+1)×1+ (k﹣1)×1,
=k2﹣1;
當0<k<1時,如圖2,
S△PAB=S△OBN﹣S△PMN+S△OAM,
= ONyB﹣k2+ OM|yA|,
= (k+1)×1﹣k2+ (1﹣k)×1,
=1﹣k2
【解析】解:(1)由正、反比例函數(shù)圖象的對稱性可知,點A、B關(guān)于原點O對稱,
∵A點的坐標為(﹣k,﹣1),
∴B點的坐標為(k,1).
所以答案是:(k,1).
2)①證明過程如下,設(shè)P(m, ),直線PA的解析式為y=ax+b(a≠0).
則 ,
解得: ,
∴直線PA的解析式為y= x+ ﹣1.
當y=0時,x=m﹣k,
∴M點的坐標為(m﹣k,0).
過點P作PH⊥x軸于H,如圖1所示,
∵P點坐標為(m, ),
∴H點的坐標為(m,0),
∴MH=xH﹣xM=m﹣(m﹣k)=k.
同理可得:HN=k.
∴MH=HN,
∴PM=PN.
所以答案是: ;y= x+ ﹣1.
【考點精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的圖象的相關(guān)知識,掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點,以及對反比例函數(shù)的性質(zhì)的理解,了解性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在正方形網(wǎng)格中有一個△ABC,按要求進行下列作圖(只能借助于網(wǎng)格).
(1)畫出△ABC中BC邊上的高AH和BC邊上的中線AD.
(2)畫出將△ABC向右平移5格又向上平移3格后的△A′B′C′.
(3)△ABC的面積為 .
(4)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當點D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由
(3)若D為AB的中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀材料)
小明同學遇到下列問題:
解方程組,他發(fā)現(xiàn)如果直接用代入消元法或加減消元法求解,運算量比較大,也容易出錯.如果把方程組中的(2x+3y)看作一個數(shù),把(2x﹣3y)看作一個數(shù),通過換元,可以解決問題.以下是他的解題過程:
令m=2x+3y,n=2x﹣3y,
這時原方程組化為,解得,
把代入m=2x+3y,n=2x﹣3y.
得解得.
所以,原方程組的解為
(解決問題)
請你參考小明同學的做法,解決下面的問題:
(1)解方程組;
(2)已知方程組的解是,求方程組的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為適應日益激烈的市場競爭要求,某工廠從2016年1月且開始限產(chǎn),并對生產(chǎn)線進行為期5個月的升降改造,改造期間的月利潤與時間成反比例;到5月底開始恢復全面生產(chǎn)后,工廠每月的利潤都比前一個月增加10萬元.設(shè)2016年1月為第1個月,第x個月的利潤為y萬元,其圖象如圖所示,試解決下列問題:
(1)分別求該工廠對生產(chǎn)線進行升級改造前后,y與x之間的函數(shù)關(guān)系式;
(2)到第幾個月時,該工廠月利潤才能再次達到100萬元?
(3)當月利潤少于50萬元時,為該工廠的資金緊張期,問該工廠資金緊張期共有幾個月?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的圖象交x軸于A(﹣2,0)和點B,交y軸負半軸于點C,且OB=OC,下列結(jié)論:
①2b﹣c=2;②a= ;③ac=b﹣1;④ >0
其中正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,BD⊥AC于點D.
(1)若∠C=∠ABC=2∠A,則∠DBC= °;
(2)若∠A=2∠CBD,求證:∠ACB=∠ABC;
(3)如圖2,在(2)的條件下,E是AD上一點,F是AB延長線上一點,連接BE、CF,使∠BEC=∠CFB,∠BCF=2∠ABE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商人將單價為8元的商品按每件10元出售,每天可銷售100件,已知這種商品每提高2元,其銷量就要減少10件,為了使每天所賺利潤最多,該商人應將銷售價(為偶數(shù))提高( )
A.8元或10元
B.12元
C.8元
D.10元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(2,0),D(6,4),將線段AD平移得到BC,B(0,﹣6),延長BC交x軸于點E.
(1)則△ABC的面積是 ;
(2)Q為x軸上一動點,當△ABC與△ADQ的面積相等時,試求點Q的坐標.
(3)若存在一點M(m,6)且△ADM的面積不小于△ABC的面積,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com