【題目】如圖,已知點B,E,C,F(xiàn)在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
【答案】(1)證明見解析;(2)9.
【解析】
試題分析:(1)首先證明△ABC≌△DFE可得∠ACE=∠DEF,進而可得AC∥DE;
(2)根據(jù)△ABC≌△DFE可得BC=EF,利用等式的性質可得EB=CF,再由BF=13,EC=5進而可得EB的長,然后可得答案.
試題解析:(1)證明:在△ABC和△DFE中,∵AB=DF,∠A=∠D,AC=DE,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;
(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=(13-5)÷2=4,∴CB=4+5=9.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的四邊相等,且面積為120cm2 , 對角線AC=24cm,則四邊形ABCD的周長為( )
A.52cm
B.40cm
C.39cm
D.26cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿BD對折,點A落在E處,BE與CD相交于F,若AD=3,BD=6.
(1)求證:△EDF≌△CBF;
(2)求∠EBC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠BAC、∠ABC的平分線相交于點D,DE⊥BC,DF⊥AC,垂足分別為E、F.問四邊形CFDE是正方形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知實數(shù)x、y、z滿足x2+y2+z2=4,則(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是( 。
A.12
B.20
C.28
D.36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1 .
(2)寫出點A1 , B1 , C1的坐標(直接寫答案). A1
B1
C1 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com