【題目】正方形的邊長為2,建立合適的直角坐標(biāo)系,寫出各個(gè)頂點(diǎn)的坐標(biāo).

【答案】解:如圖,以正方形的兩邊所在的直線為x軸、y軸建立直角坐標(biāo)系,
則正方形ABCO的四個(gè)頂點(diǎn)的坐標(biāo)分別為:
A(0,2),B(2,2),C(2,0),O(0,0).(答案不唯一)
【解析】以正方形的一個(gè)頂點(diǎn)為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,然后寫出各頂點(diǎn)的坐標(biāo)即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4x軸于A(﹣2,0)B(8,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過點(diǎn)E作直線lx軸于H,過點(diǎn)CCFlF

(1)求拋物線解析式;

(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線上時(shí),求線段OD的長;

(3)(2)的條件下:

①連接DF,求tanFDE的值;

②試探究在直線l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幢住宅樓,底層為店面房,層高為4米,以上每層高3米,則樓高h(yuǎn)與層數(shù)n之間的關(guān)系式為_____,其中可以將_____看成自變量,_____是因變量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過點(diǎn)(﹣2,3)的直線l經(jīng)過一、二、三象限,若點(diǎn)(0,a),(﹣1,b),(c,﹣1)都在直線l上,則下列判斷正確的是( )
A.a<b
B.a<3
C.b<3
D.c<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC的周長是16,底邊BC上的高AD的長是4,求這個(gè)三角形各邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)E,過點(diǎn)E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1時(shí)30分時(shí),時(shí)鐘的時(shí)針與分針的夾角是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中不能用平方差公式進(jìn)行因式分解的是( 。

A. 1-a4 B. -16a2+b2 C. -m4-n4 D. 9a2-b4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:

1)請(qǐng)問采摘的黃瓜和茄子各多少千克?

2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案