【題目】如圖,已知點A在反比例函數(shù)y=﹣的圖象上,點D在反比例函數(shù)y=(k≠0)的圖象上,AD∥x軸,AB⊥x軸于B,DC⊥x軸于C,若OB=OC,則k的值為_____.
【答案】-12
【解析】
如圖,延長DA交y軸于E,則DE⊥y軸,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義可得S四邊形ABOE=4,已知OB=OC,AD∥x軸,DC⊥x軸于C,由此可得S四邊形CDEO=3S四邊形ABOE=12,再由反比例函數(shù)比例系數(shù)k的幾何意義可得k=±12,又因反比例函數(shù)y=的圖象位于第二象限,可知k<0,由此可得k=﹣12.
如圖,延長DA交y軸于E,則DE⊥y軸,
∵點A在反比例函數(shù)y=﹣的圖象上,AB⊥x軸于B,
∴S四邊形ABOE=|﹣4|=4,
又∵OB=OC,AD∥x軸,DC⊥x軸于C,
∴S四邊形CDEO=3S四邊形ABOE=12,
又∵點D在反比例函數(shù)y=(k≠0)的圖象上,
∴|k|=12,
解得k=±12,
又∵k<0,
∴k=﹣12,
故答案為:﹣12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=3ax2+2bx+c(a≠0)。
(1)若a=b=1,C=-1。求此拋物線與x軸的交點的坐標(biāo);
(2)若a=,c=b+2,其中b是整數(shù)。
①直接寫出拋物線的頂點坐標(biāo)(用含有b的代數(shù)式表示),并寫出頂點縱坐標(biāo)的最大值;
②若拋物線在-2≤x≤2時,拋物線的最小值是-3,求b的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形ABC中,∠BAC=90°,(AC>AB),在邊AC上取一點D,使得BD=CD,點E、F分別是線段BC、BD的中點,連接AF和EF,作∠FEM=∠FDC,交AC于點M,如圖1所示.
(1)請判斷四邊形EFDM是什么特殊的四邊形,并證明你的結(jié)論;
(2)將∠FEM繞點E順時針旋轉(zhuǎn)到∠GEN,交線段AF于點G,交AC于點N,如圖2所示,請證明:EG=EN;
(3)在第(2)條件下,若點G是AF中點,且∠C=30°,AB=3,如圖3,求GE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C,D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當(dāng)PA+PB的值最小時,求點P的坐標(biāo);
(3)拋物線上是否存在一點Q(Q與B不重合),使△CDQ的面積等于△BCD的面積?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象經(jīng)過點T.下列各點P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在該函數(shù)圖象上的點有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):
如圖1,直線MN外一點A,過點A作直線MN的平行線.
(1)小路的作法如下:
① 在MN上任取一點B,作射線BA;
② 以B為圓心任意長為半徑畫弧,分別交BA和MN于C、D兩點(點D位于BA的左側(cè)),再以A為圓心,相同的長度為半徑畫弧EH,交BA于點E(點E位于點A上方);
③以E為圓心CD的長為半徑畫弧,交弧EH于點F(F點位于BA左側(cè))
④作直線AF
⑤直線AF即為所求作平行線.
請你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊含的數(shù)學(xué)依據(jù):
(2)請你參考小路的作法,利用圖2再設(shè)計一種“過點A作MN的平行線”的尺規(guī)作圖過程(保留作圖痕跡),并說明其中蘊含的數(shù)學(xué)依據(jù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,,,AD、BE相交于點M,連接CM.
求證:;
求的度數(shù)用含的式子表示;
如圖2,當(dāng)時,點P、Q分別為AD、BE的中點,分別連接CP、CQ、PQ,判斷的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,.
如圖①,將線段繞點順時針旋轉(zhuǎn),所得到與交于點,則的長________;
如圖②,點是邊上一點且,將線段繞點旋轉(zhuǎn),得線段,點始終為的中點,則將線段繞點逆時針旋轉(zhuǎn)________度時,線段的長最大,最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB于點D,BE⊥AC于點E,BE與CD交于點F。
(1)求證:△ACD≌△FBD。
(2)若AB=5,AD=1,求BF的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com