【題目】如圖,在正方形ABCD內有一點P滿足AP=AB,PB=PC,連接AC、PD

求證:(1APB≌△DPC;(2BAP=2PAC

【答案】證明見解析.

【解析】試題分析:根據(jù)正方形的性質和等腰三角形的性質得出∠ABP=DCP,再利用SAS判定三角形全等即可;(2)根據(jù)已知條件和正方形的性質得到APD為等邊三角形,求得∠DAP=60,即可分別求出∠PAC、∠BAP的度數(shù),即可得到二者關系.

試題解析:

(1)∵四邊形ABCD是正方形,∴∠ABC=DCB=90.

PB=PC,∴∠PBC=PCB.

∴∠ABCPBC=DCBPCB,即∠ABP=DCP.

又∵AB=DC,PB=PC,

APBDPC.(3)

(2)證明:∵四邊形ABCD是正方形,

∴∠BAC=DAC=45.

APBDPCAP=DP.

又∵AP=AB=AD,DP=AP=AD.

APD是等邊三角形。

∴∠DAP=60.

∴∠PAC=DAPDAC=15.

∴∠BAP=BACPAC=30.

∴∠BAP=2PAC.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個角的兩邊分別平行于另一個角的兩邊,且其中一個角是55°,則另一個角的度數(shù)為 ______。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,把表示數(shù)1的點稱為基準點,記作點. 對于兩個不同的MN,若點M、點N到點的距離相等,則稱點M與點N互為基準變換點. 例如:圖中,點M表示數(shù),點N表示數(shù)3,它們與基準點的距離都是2個單位長度,點M與點N互為基準變換點.

1)已知點A表示數(shù)a,點B表示數(shù)b,點A與點B互為基準變換點.

a=0,則b= ;若,則b=

用含a的式子表示b,則b= ;

2)對點A進行如下操作:先把點A表示的數(shù)乘以,再把所得數(shù)表示的點沿著數(shù)軸向左移動3個單位長度得到點B. 若點A與點B互為基準變換點,則點A表示的數(shù)是 ;

3)點P在點Q的左邊,點P與點Q之間的距離為8個單位長度.對P、Q兩點做如下操作:點P沿數(shù)軸向右移動kk>0)個單位長度得到, 的基準變換點,點沿數(shù)軸向右移動k個單位長度得到, 的基準變換點,……,依此順序不斷地重復,得到, ,, . Q的基準變換點,將數(shù)軸沿原點對折后的落點為, 的基準變換點, 將數(shù)軸沿原點對折后的落點為,……,依此順序不斷地重復,得到, , .若無論k為何值, 兩點間的距離都是4,則n= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖7,ABC是等腰直角三角形,AC=BC=,以斜邊AB上的點O為圓心的圓分別與AC,BC相切與點E,F(xiàn), 與AB 分別交于點G,H,且 EH 的延長線和 CB 的延長線交于點D,則 CD 的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號.已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.

(1)分別求出A與C,A與D間的距離AC和AD(如果運算結果有根號,請保留根號).

(2)已知距離觀測點D處100海里范圍內有暗礁,若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報名到農(nóng)村中學支教.

(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是

(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學校的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的價格標簽已丟失,售貨員只知道它的進價為80元,打七折出售后,仍可獲利5你認為售貨員應標在標簽上的價格為(

A. 110B. 120C. 130D. 140

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列圖形中,既是中心對稱圖形又是軸對稱圖形的是( )

A.等邊三角形B.C.等腰梯形D.直角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b(a0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k0)在同一直角坐標系中的圖象如圖所示,A點的坐標為(-2,0),則下列結論中,正確的是( 。

A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0

查看答案和解析>>

同步練習冊答案