【題目】兩個(gè)全等的直角三角形ABCDEF重疊在一起,其中∠ACB=∠DFE=90°A=∠FDE=60°,AC=1. 固定△ABC不動(dòng),將△DEF進(jìn)行如下操作:

(1) 如圖 (1),△DEF沿線段AB向右平移(即D點(diǎn)在線段AB內(nèi)移動(dòng)),連結(jié)DC、CF、FB,四邊形CDBF的形狀在不斷的變化,但它的面積不變化,請(qǐng)求出其面積.

(2)如圖(2),當(dāng)D點(diǎn)移到AB的中點(diǎn)時(shí),請(qǐng)你猜想四邊形CDBF的形狀,并說(shuō)明理由.

(3)如圖(3),△DEFF點(diǎn)固定在AB的中點(diǎn),然后繞F點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)△DEF,使EF交在AC邊上于M,F(xiàn)D交BC于N,若FM=x,FN=y,試求y關(guān)于x的函數(shù)關(guān)系式。

【答案】(1) ,(2)略,(3)y=x.

【解析】試題分析:1)過(guò)點(diǎn)C,垂足是點(diǎn),易證四邊形是梯形,在直角中利用三角形的性質(zhì)求得,然后利用梯形的面積公式求解;
2)首先證明四邊形是平行四邊形,然后根據(jù)菱形的定義即可證得四邊形是菱形.

過(guò)點(diǎn),由兩組角分別對(duì)應(yīng)相等,可得: 對(duì)應(yīng)邊的比相等,可得出的關(guān)系式.

試題解析:(1)過(guò)點(diǎn)CCGAE,垂足是點(diǎn)G.

由題可知,CFAE,CF=AD=BE

則四邊形CDBF是梯形.

∵在直角△ABC,

AB=2,

在直角△ACG,

S梯形CDBF

(2)四邊形CDBF是菱形.

理由如下:∵在直角△ABC中,DAB的中點(diǎn),

AD=DB=CD

(1)CF=AD

CF=DB=CD,

又∵CFAE

∴四邊形CDBF是平行四邊形.

CD=BD,

∴四邊形CDBF是菱形.

過(guò)點(diǎn),

可解得

,

整理得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是正方形ABCD的邊AB上的動(dòng)點(diǎn),EFDEBC于點(diǎn)F.

(1)求證:ADEBEF.

(2)設(shè)正方形的邊長(zhǎng)為4,AE=x,BF=y.當(dāng)x取什么值時(shí),y有最大值?并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,ABACAB=3cm,BC=5cm.點(diǎn)PA點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s,連接PO并延長(zhǎng)交BC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<5)

1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?

2)當(dāng)t=3時(shí)四邊形OQCD的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017湖北省鄂州市,第8題,3分)小東家與學(xué)校之間是一條筆直的公路,早飯后,小東步行前往學(xué)校,圖中發(fā)現(xiàn)忘帶畫(huà)板,停下給媽媽打電話(huà),媽媽接到電話(huà)后,帶上畫(huà)板馬上趕往學(xué)校,同時(shí)小東沿原路返回,兩人相遇后,小東立即趕往學(xué)校,媽媽沿原路返回16min到家,再過(guò)5min小東到達(dá)學(xué)校,小東始終以100m/min的速度步行,小東和媽媽的距離y(單位:m)與小東打完電話(huà)后的步行時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示,下列四種說(shuō)法:

①打電話(huà)時(shí),小東和媽媽的距離為1400米;

②小東和媽媽相遇后,媽媽回家的速度為50m/min;

③小東打完電話(huà)后,經(jīng)過(guò)27min到達(dá)學(xué)校;

④小東家離學(xué)校的距離為2900m

其中正確的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)接受問(wèn)卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為   度;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)在平面直角坐標(biāo)系中,作出下列各點(diǎn),A(-3,4), B(-3,-2),O(0,0),并把各點(diǎn)連起來(lái).

(2)畫(huà)出ABO先向下平移2個(gè)單位,再向右平移4 個(gè)單位得到的圖形A1B1o1,并直接寫(xiě)出A1坐標(biāo)

(3) 直接寫(xiě)出三角形ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過(guò)程,下表是摸到白球的頻率折線統(tǒng)計(jì)圖:

(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 (精確到0.01);假如你摸一次,你摸到白球的概率

(2)試估算盒子里白、黑兩種顏色的球各有多少只?

(3)在(2)條件下如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整:

1)自變量的取值范圍是__________;

2)下表是的幾組對(duì)應(yīng)數(shù)值:

0

2

3

4

0

2

①寫(xiě)出的值為

②在平面直角坐標(biāo)系中,描出了以表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象:

3)當(dāng)時(shí),直接寫(xiě)出x的取值范圍為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形,點(diǎn)是邊的中點(diǎn),,且交正方形外角的平分線于點(diǎn),試說(shuō)明的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案