【題目】校園安全受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為   度;

(2)請補全條形統(tǒng)計圖;

(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達到了解基本了解程度的總?cè)藬?shù).

【答案】(1) 60,90;(2)見解析;(3) 300人

【解析】

1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角;

(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;

(3)利用樣本估計總體的方法,即可求得答案.

解:(1)∵了解很少的有30人,占50%,

∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);

∴扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為:×360°=90°;

故答案為:60,90;

(2)60﹣15﹣30﹣10=5;

補全條形統(tǒng)計圖得:

(3)根據(jù)題意得:900×=300(人),

則估計該中學(xué)學(xué)生中對校園安全知識達到了解基本了解程度的總?cè)藬?shù)為300人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc0;②b2﹣4ac=0;③a2;④4a﹣2b+c0.其中正確結(jié)論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線的解析式是,并且與軸、軸分別交于A、B兩點.一個半徑為1.5的⊙C,圓心C從點(01.5)開始以每秒0.5個單位的速度沿著軸向下運動,當⊙C與直線相切時,則該圓運動的時間為( 。

A. 3秒或6 B. 6 C. 3 D. 6秒或16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,,點分別在上,把沿翻折,的落點是對角線上的點,則四邊形的面積是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊△ABC的兩個頂點坐標為A-30),B30),則點的坐標為____,△ABC的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個全等的直角三角形ABCDEF重疊在一起,其中∠ACB=∠DFE=90°,A=∠FDE=60°,AC=1. 固定△ABC不動,將△DEF進行如下操作:

(1) 如圖 (1),△DEF沿線段AB向右平移(即D點在線段AB內(nèi)移動),連結(jié)DCCF、FB,四邊形CDBF的形狀在不斷的變化,但它的面積不變化,請求出其面積.

(2)如圖(2),當D點移到AB的中點時,請你猜想四邊形CDBF的形狀,并說明理由.

(3)如圖(3),△DEFF點固定在AB的中點,然后繞F點按順時針方向旋轉(zhuǎn)△DEF,使EF交在AC邊上于M,F(xiàn)D交BC于N,若FM=x,FN=y,試求y關(guān)于x的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(-10),B30),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD

1)求點CD的坐標及四邊形ABDC的面積S四邊形ABDC(提示:平行四邊形的面積=×)

2)在y軸上是否存在一點P,連接PA,PB,使SPAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由.

3)點P是線段BD上的一個動點,連接PCPO,當點PBD上移動時(不與B,D重合)的值是否發(fā)生變化,若不變請求出該值,若會變請并請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定,在平面直角坐標系中,經(jīng)過象限內(nèi)某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“參照線”.例如,點的參照線有:,(如圖1).

如圖2,正方形在平面直角坐標系中,點在第一象限,點,分別在軸和軸上,點在正方形內(nèi)部.

1)直接寫出點的所有參照線:

2)若,點在線段的垂直平分線上,且點有一條參照線是,則點的坐標是_______________

3)在(2)的條件下,點邊上任意一點(點不與點,重合),連接,將沿著折疊,點的對應(yīng)點記為.當點在點的平行于坐標軸的參照線上時,寫出相應(yīng)的折痕所在直線的解析式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,的中點,,于點

1)求證:四邊形是菱形.

2)若,,求的長.

查看答案和解析>>

同步練習(xí)冊答案