【題目】如圖,在直角坐標系中,點A的坐標為(﹣2,0),OB=OA,且∠AOB=120°.

(1)求經(jīng)過A,O,B三點的拋物線的解析式.
(2)在(1)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標;若不存在,請說明理由.
(3)若點M為拋物線上一點,點N為對稱軸上一點,是否存在點M,N使得A,O,M,N構(gòu)成的四邊形是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

【答案】
(1)

解:過點B作BD⊥x軸于點D,由已知可得:OB=OA=2,∠BOD=60°,

在Rt△OBD中,∠ODB=90°,∠OBD=30°

∴OD=1,DB=

∴點B的坐標是(1, ).

設(shè)所求拋物線的解析式為y=ax2+bx+c,

由已知可得: ,

解得:

∴所求拋物線解析式為y=


(2)

解:存在,

∵△BOC的周長=OB+BC+CO,

又∵OB=2

∴要使△BOC的周長最小,必須BC+CO最小,

∵點O和點A關(guān)于對稱軸對稱

∴連接AB與對稱軸的交點即為點C,

且有OC=OA

此時△BOC的周長=OB+BC+CO=OB+BC+AC;

點C為直線AB與拋物線對稱軸的交點

設(shè)直線AB的解析式為y=kx+b,

將點A(﹣2,0),B(1, )分別代入,得:

,

解得: ,

∴直線AB的解析式為y= x+

當x=﹣1時,y= ,

∴所求點C的坐標為(﹣1, );


(3)

解:如圖,

①當以O(shè)A為對角線時,

OA與MN互相垂直且平分

∴點M(﹣1,﹣ ),

②當以O(shè)A為邊時

OA=MN且OA∥MN

即MN=2,MN∥x軸

設(shè)N(﹣1,t)

則M(﹣3,t)或(1,t)

將M點坐標代入y=

∴t=

∴M(﹣3, )或(1,

綜上:點M的坐標為:M(﹣1,﹣ )或(﹣3, )或(1, ).


【解析】(1)先確定出點B坐標,再用待定系數(shù)法即可;(2)先判斷出使△BOC的周長最小的點C的位置,再求解即可;(3)分OA為對角線和為邊兩種情況進行討論計算.
【考點精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)當銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與y軸交于點C,點D(0,1),點P是拋物線上的動點.若△PCD是以CD為底的等腰三角形,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們將在直角坐標系中圓心坐標和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:y=kx+4 與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是(
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級數(shù)學興趣小組經(jīng)過市場調(diào)查,得到某種運動服每月的銷量與售價的相關(guān)信息如下表:

售價(元/件)

100

110

120

130

月銷量(件)

200

180

160

140

已知該運動服的進價為每件60元,設(shè)售價為x元.
(1)請用含x的式子表示:①銷售該運動服每件的利潤是 ()元;②月銷量是 ()件;(直接寫出結(jié)果)
(2)設(shè)銷售該運動服的月利潤為y元,那么售價為多少時,當月的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次男子馬拉松長跑比賽中,隨機抽得12名選手所用的時間(單位:分鐘)得到如下樣本數(shù)據(jù):140 146 143 175 125 164 134 155 152 168 162 148

(1)計算該樣本數(shù)據(jù)的中位數(shù)和平均數(shù);

(2)如果一名選手的成績是147分鐘,請你依據(jù)樣本數(shù)據(jù)的中位數(shù),推斷他的成績?nèi)绾危?/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小紅的奶奶開了一個金鍵牛奶銷售店,主要經(jīng)營金鍵學生奶”、“金鍵酸牛奶”、“金鍵原味奶”,由于經(jīng)營不善,經(jīng)常導致牛奶滯銷(沒賣完)或脫銷(量不夠),為此細心的小紅結(jié)合所學知識幫奶奶統(tǒng)計了一個星期牛奶的銷售情況,并繪制成下表:

(1)計算各品種牛奶的日平均銷售量,并說明哪種牛奶銷量最高

(2)計算各品種牛奶的方差(保留兩位小數(shù)),并比較哪種牛奶銷量最穩(wěn)定;

(3)假如你是小紅,會給奶奶哪些建議?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中∠ABC=90°,∠A=30°,BC=2cm,動點P以3cm/s的速度由A沿射線AC方向運動,動點Q同時以1cm/s的速度由B向CB的延長線方向運動,連PQ交直線AB于D,則當運動時間為s時,△ADP是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題。
(1)用適當?shù)姆椒ń庀铝幸辉畏匠蹋簒2﹣6x+1=0.
(2)如圖,已知E、F分別是矩形ABCD的對角線AC和BD上的點,且AE=DF,求證:BE=CF.

查看答案和解析>>

同步練習冊答案