【題目】某商場購進一批單價為4元的日用品.若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)y(件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)當銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?

【答案】
(1)解:由題意,可設(shè)y=kx+b(k≠0),

把(5,30000),(6,20000)代入得: ,

解得: ,

所以y與x之間的關(guān)系式為:y=﹣10000x+80000;


(2)解:設(shè)利潤為W元,則W=(x﹣4)(﹣10000x+80000)

=﹣10000(x﹣4)(x﹣8)

=﹣10000(x2﹣12x+32)

=﹣10000[(x﹣6)2﹣4]

=﹣10000(x﹣6)2+40000

所以當x=6時,W取得最大值,最大值為40000元.

答:當銷售價格定為6元時,每月的利潤最大,每月的最大利潤為40000元.


【解析】(1)利用待定系數(shù)法求得y與x之間的一次函數(shù)關(guān)系式;(2)根據(jù)“利潤=(售價﹣成本)×售出件數(shù)”,可得利潤W與銷售價格x之間的二次函數(shù)關(guān)系式,然后求出其最大值.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖中給出的信息,解答下列問題:

1)放入一個小球水面升高 ,,放入一個大球水面升高 ;

2)如果要使水面上升到50,應放入大球、小球各多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1是邊長分別為4 和2的兩個等邊三角形紙片ABC和OD′E′疊放在一起(C與O重合).
(1)操作:固定△ABC,將△ODE繞點C順時針旋轉(zhuǎn)30°,后得到△ODE,連接AD、BE、CE的延長線交AB于F(圖2): 探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)在(1)的條件下將△ODE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR,當點P與點F重合時停止運動(圖3). 探究:設(shè)△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)將圖1中△ODE固定,把△ABC沿著OE方向平移,使頂點C落在OE的中點G處,設(shè)為△ABG,然后獎△ABG繞點G順時針旋轉(zhuǎn),邊BG交邊DE于點M,邊AG交邊DO于點N,設(shè)∠BGE=α(30°<α<90°)(圖4). 探究:在圖4中,線段ONEM的值是否隨α的變化而變化?如果沒有變化,請你求出ONEM的值,如果有變化,請你說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C的坐標分別是(4,0)和(0,2),反比例函數(shù)y= (x>0)的圖象過對角線的交點P并且與AB,BC分別交于D,E兩點,連接OD,OE,DE,則△ODE的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°AB=AC,直線m經(jīng)過點ABD直線m, CE直線m,垂足分別為點D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、A、E三點都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3拓展與應用:如圖3,D、ED、A、E三點所在直線m上的兩動點(DA、E三點互不重合),FBAC平分線上的一點,ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰△ABC中,AD垂直于直線BC,垂足為點D,且AD=BC,則△ABC底角的度數(shù)為(  )

A. 45° B. 75° C. 45°或75°或15° D. 60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

(1)若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標;
(2)若△ABC和△A2B2C2關(guān)于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標;
(3)將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3 , 寫出△A3B3C3的各頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年9月5日,二十國集團領(lǐng)導人杭州峰會在杭州國際博覽中心繼續(xù)舉行,這次峰會吸引了大批游客在“十一”假期間前往杭州旅游.為抓住商機,兩個商家對同樣一件售價為50元/個的產(chǎn)品進行促銷活動.甲商家用如下方法促銷:若購買該商品不超過l0個,按原價付款:若一次購買l0個以上.且購買的個數(shù)每增加一個,其價格減少l元,但該商品的售價不得低于35元/個;乙店一律按原價的80%銷售.現(xiàn)購買該商品x個,如果全部在甲商家購買,則所需金額為y1元:如果全部在乙商家購買,則所需金額為y2元.
(1)分別求出yl , y2與x之間的函數(shù)關(guān)系式;
(2)若一位游客花800元,最多能購買多少個該商品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A的坐標為(﹣2,0),OB=OA,且∠AOB=120°.

(1)求經(jīng)過A,O,B三點的拋物線的解析式.
(2)在(1)中拋物線的對稱軸上是否存在點C,使△BOC的周長最小?若存在,求出點C的坐標;若不存在,請說明理由.
(3)若點M為拋物線上一點,點N為對稱軸上一點,是否存在點M,N使得A,O,M,N構(gòu)成的四邊形是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案