【題目】計算題。
(1)用適當(dāng)?shù)姆椒ń庀铝幸辉畏匠蹋簒2﹣6x+1=0.
(2)如圖,已知E、F分別是矩形ABCD的對角線AC和BD上的點,且AE=DF,求證:BE=CF.
【答案】
(1)解:x2﹣6x+1=0.
移項得,x2﹣6x=﹣1,
配方得,x2﹣6x+9=﹣1+9,
∴(x﹣3)2=8,
∴x﹣3=±2 ,
∴x1=3+2 ,x2=3﹣2
(2)證明:∵矩形ABCD的對角線為AC和BD,
∴AO=CO=BO=DO,
∵E、F分別是矩形ABCD的對角線AC和BD上的點,AE=DF,
∴EO=FO,
在△BOE和△COF中, ,
∴△BOE≌△COF(SAS),
∴BE=CF.
【解析】(1)用配方法解一元二次方程,首先將常數(shù)項移到等號的右側(cè),將等號左右兩邊同時加上一次項系數(shù)一半的平方,即可將等號左邊的代數(shù)式寫成完全平方形式.(2)根據(jù)矩形對角線的性質(zhì),矩形對角線互相平分且相等,可知EO=FO,BO=CO,∠BOE=∠COF,可知△BOE≌△COF,即可得出BE=CF.
【考點精析】利用矩形的性質(zhì)對題目進行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(﹣2,0),OB=OA,且∠AOB=120°.
(1)求經(jīng)過A,O,B三點的拋物線的解析式.
(2)在(1)中拋物線的對稱軸上是否存在點C,使△BOC的周長最?若存在,求出點C的坐標(biāo);若不存在,請說明理由.
(3)若點M為拋物線上一點,點N為對稱軸上一點,是否存在點M,N使得A,O,M,N構(gòu)成的四邊形是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一點,且FD⊥BC于D點.
(1)試猜想∠EFD,∠B,∠C的關(guān)系,并說明理由;
(2)如圖②,當(dāng)點F在AE的延長線上時,其余條件不變,(1)中的結(jié)論還成立嗎?說明理由.
① ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果兩個一次函數(shù)y=k1x+b1和y=k2x+b2滿足k1=k2 , b1≠b2 , 那么稱這兩個一次函數(shù)為“平行一次函數(shù)”. 如圖,已知函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點,一次函數(shù)y=kx+b與y=﹣2x+4是“平行一次函數(shù)”
(1)若函數(shù)y=kx+b的圖象過點(3,1),求b的值;
(2)若函數(shù)y=kx+b的圖象與兩坐標(biāo)軸圍成的三角形和△AOB構(gòu)成位似圖形,位似中心為原點,位似比為1:2,求函數(shù)y=kx+b的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水龍頭關(guān)閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關(guān)系圖象,請結(jié)合圖象解答下列問題:
(1)容器內(nèi)原有水多少?
(2)求W與t之間的函數(shù)關(guān)系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?
圖 ① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E為AD的中點,請只用無刻度的直尺作圖
(1)如圖1,在BC上找點F,使點F是BC的中點;
(2)如圖2,在AC上取兩點P,Q,使P,Q是AC的三等分點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
為了加強學(xué)生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動.學(xué)校隨機抽取了部分學(xué)生,對他們一周的課外閱讀時間進行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:
請根據(jù)圖表信息回答下列問題:
(1)頻數(shù)分布表中的 , ;
(2)將頻數(shù)分布直方圖補充完整;
(3)學(xué)校將每周課外閱讀時間在小時以上的學(xué)生評為“閱讀之星”,請你估計該校名學(xué)生中評為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使三角形AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( )
A.80°
B.90°
C.100°
D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個多邊形就叫做正多邊形,如圖,就是一組正多邊形,觀察每個正多邊形中∠α的變化情況,解答下列問題.
(1)將下面的表格補充完整:
正多邊形的邊數(shù) | 3 | 4 | 5 | 6 | …… | 18 |
∠α的度數(shù) |
|
|
|
| …… |
|
(2)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的∠α=20°?若存在,直接寫出n的值;若不存在,請說明理由.
(3)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的∠α=21°?若存在,直接寫出n的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com