【題目】 如圖,點D在雙曲線上,AD垂直x軸,垂足為A,點CAD上,CB平行于x軸交雙曲線于點B,直線ABy軸相交于點F,已知ACAD13,點C的坐標(biāo)為(32).

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)直接寫出反比例函數(shù)值大于一次函數(shù)值時自變量的取值范圍.

【答案】1,;(20x9x-6

【解析】

1)由點C的坐標(biāo)為(3,2)得AC=2,而ACAD=13,得到AD=6,則D點坐標(biāo)為(3,6),然后利用待定系數(shù)法確定雙曲線的解析式,把y=2代入求得B的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得直線AB的解析式;

2)聯(lián)立解析式,解方程組求得另一個交點坐標(biāo),然后利用圖象即可求出答案.

1)∵點C的坐標(biāo)為(3,2),

OA=3,AC=2,

ACAD=13,

AD=6,

∴點D的坐標(biāo)為(36),

設(shè)雙曲線的解析式為,

k=3×6=18,

∴雙曲線的解析式為:;

設(shè)直線AB的解析式為

CB平行于x軸交曲線于點B,

B點的縱坐標(biāo)為2,

代入x=9,

B點的坐標(biāo)為(9,2),

A3,0)和B9,2)代入

解得:,

∴直線AB的解析式為:;

2)聯(lián)立解析式得

解得,

∴反比例函數(shù)與一次函數(shù)的另一個交點為(-6,-3),

∴根據(jù)圖象,當(dāng)x-60x9時,反比例函數(shù)的圖象在一次函數(shù)的上方,

∴反比例函數(shù)值大于一次函數(shù)值時自變量的取值范圍是:x-60x9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使ADE=30°.

(1)求證:ABD∽△DCE;

(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(3)當(dāng)ADE是等腰三角形時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號召,某社區(qū)決定購置一批共享單車,經(jīng)市場調(diào)查知,購買3量男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.

(1)求男式單車和女式單車的單價;

(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是矩形ABCD的中心,EAB上的點,沿CE折疊后,點B恰好與點O重合,若BC=3,則折痕CE的長為( 。

A. B. C. D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線yax2+bx+cx軸交于兩個不同的點A(﹣1,0),Bm,0),與y軸交于點C0,﹣2),且∠ACB90度.

1)求m的值和拋物線的解析式;

2)已知點D1,n)在拋物線上,過點A的直線yx+1交拋物線于另一點E,求點D和點E的坐標(biāo);

3)在x軸上是否存在點P,使以點P,B,D為頂點的三角形與三角形AEB相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點EBE的垂線交AB于點F,⊙OBEF的外接圓.

1)求證:AC是⊙O的切線;

2)過點EEHAB,垂足為H,求證:CD=HF;

3)若CD=1,EF=,求AF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離y()與時間t(分鐘)之間的函數(shù)關(guān)系如圖所示.乙回到學(xué)校用了______分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點,OA=3OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;OO′的距離為4;③∠AOB=150°;④S四邊形AOBO⑤SAOC+SAOB=.其中正確的結(jié)論是( 。

A.①②③⑤B.①②③④C.①②③④⑤D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場按定價銷售某種商品時,每件可獲利100元;按定價的八折銷售該商品5件與將定價降低50元銷售該商品6件所獲利潤相等.

(1)該商品進價、定價分別是多少?

(2)該商場用10000元的總金額購進該商品,并在五一節(jié)期間以定價的七折優(yōu)惠全部售出,在每售出一件該商品時,均捐獻元給社會福利事業(yè),該商場為能獲得不低于3000元的利潤,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案