【題目】某商場(chǎng)按定價(jià)銷售某種商品時(shí),每件可獲利100元;按定價(jià)的八折銷售該商品5件與將定價(jià)降低50元銷售該商品6件所獲利潤(rùn)相等.
(1)該商品進(jìn)價(jià)、定價(jià)分別是多少?
(2)該商場(chǎng)用10000元的總金額購進(jìn)該商品,并在五一節(jié)期間以定價(jià)的七折優(yōu)惠全部售出,在每售出一件該商品時(shí),均捐獻(xiàn)元給社會(huì)福利事業(yè),該商場(chǎng)為能獲得不低于3000元的利潤(rùn),求的最大值.
【答案】(1)該商品進(jìn)價(jià)為200元/件,進(jìn)價(jià)為100元/件;(2)10.
【解析】
(1)設(shè)該商品定價(jià)為元/件,進(jìn)價(jià)為元/件,由題意得,解方程組可得;(2)由題意得.
(1)解法一:設(shè)該商品定價(jià)為元/件,進(jìn)價(jià)為元/件,由題意得
解得:
答:該商品進(jìn)價(jià)為200元/件,進(jìn)價(jià)為100元/件.
解法二:設(shè)該商品進(jìn)價(jià)為元/件,則定價(jià)為元/件,由題意得
解得:
當(dāng)時(shí),
答:該商品進(jìn)價(jià)為200元/件進(jìn)價(jià)為100元/件.
(2)解:由題意得
解得:
的最大值為10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,點(diǎn)D在雙曲線上,AD垂直x軸,垂足為A,點(diǎn)C在AD上,CB平行于x軸交雙曲線于點(diǎn)B,直線AB與y軸相交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(3,2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)直接寫出反比例函數(shù)值大于一次函數(shù)值時(shí)自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明步行從家去火車站,走到6分鐘時(shí),以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計(jì)步行時(shí)間提前了3分鐘.小元離家路程S(米)與時(shí)間t(分鐘)之間的函數(shù)圖象如圖,那么從家到火車站路程是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,對(duì)角線,交于點(diǎn),以,為鄰邊作平行四邊形,連接.
(1)求證:四邊形是菱形;
(2)若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對(duì)于下列各值:
①線段MN的長(zhǎng);
②△PAB的周長(zhǎng);
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c經(jīng)過點(diǎn)A(0,6),點(diǎn)B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經(jīng)過拋物線y=x2+bx+c的頂點(diǎn)P,且l1與l2相交于點(diǎn)C,直線l2與x軸、y軸分別交于點(diǎn)D、E.若把拋物線上下平移,使拋物線的頂點(diǎn)在直線l2上(此時(shí)拋物線的頂點(diǎn)記為M),再把拋物線左右平移,使拋物線的頂點(diǎn)在直線l1上(此時(shí)拋物線的頂點(diǎn)記為N).
(1)求拋物y=x2+bx+c線的解析式.
(2)判斷以點(diǎn)N為圓心,半徑長(zhǎng)為4的圓與直線l2的位置關(guān)系,并說明理由.
(3)設(shè)點(diǎn)F、H在直線l1上(點(diǎn)H在點(diǎn)F的下方),當(dāng)△MHF與△OAB相似時(shí),求點(diǎn)F、H的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于,對(duì)稱軸是直線,與軸交于點(diǎn).若點(diǎn),同時(shí)從點(diǎn)出發(fā),都以每秒個(gè)單位長(zhǎng)度的速度分別沿,邊運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)的坐標(biāo),與軸的另一個(gè)交點(diǎn)的坐標(biāo).
(2)當(dāng),運(yùn)動(dòng)到秒時(shí),沿翻折,點(diǎn)恰好落在軸上點(diǎn)處,請(qǐng)判定此時(shí)四邊形的形狀,并求出點(diǎn)坐標(biāo).
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到對(duì)稱軸與的交點(diǎn)時(shí),點(diǎn)往回運(yùn)動(dòng),同時(shí)點(diǎn)則倍的速度繼續(xù)沿運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過程中,以點(diǎn),,為頂點(diǎn)的三角形面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
(4)在段的拋物線上有一點(diǎn)到線段的距離最大,請(qǐng)求出這個(gè)最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)求證這個(gè)二次函數(shù)的圖像一定與x軸有交點(diǎn);
(2)若這個(gè)二次函數(shù)有最大值0,求m的值;
(3)我們定義:若二次函數(shù)的圖像與x軸正半軸的兩個(gè)交點(diǎn)的橫坐標(biāo),滿足2<<3,則稱這個(gè)二次函數(shù)與x軸有兩個(gè)“黃金交點(diǎn)”.如果二次函數(shù)與x軸有兩個(gè)“黃金交點(diǎn)”,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)D作DH⊥AC,垂足為點(diǎn)H,連接DE,交AB于點(diǎn)F.
(1)求證:DH是⊙O的切線;
(2)若⊙O的半徑為4,AE=FE時(shí),求的長(zhǎng)(結(jié)果保留π);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com