【題目】如圖,點O是矩形ABCD的中心,EAB上的點,沿CE折疊后,點B恰好與點O重合,若BC=3,則折痕CE的長為( 。

A. B. C. D. 6

【答案】A

【解析】

先根據(jù)圖形翻折變換的性質求出AC的長,再由勾股定理及等腰三角形的判定定理即可得出結論.

解:∵△CEOCEB翻折而成,


BC=OCBE=OE,∠B=COE=90°
EOAC,
O是矩形ABCD的中心,
OEAC的垂直平分線,AC=2BC=2×3=6,
AE=CE
RtABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,
RtAOE中,設OE=x,則AE=3-x
AE2=AO2+OE2,即(3-x2=32+x2,解得x=,
AE=EC=3-=2
故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,部分同學隨家長一同到某公園游玩,下面是購買門票時,甲同學與其爸爸的對話(如圖),試根據(jù)圖中的信息,解決下列問題:

1)本次共去了幾個成人,幾個學生?

2)甲同學所說的另一種購票方式,是否可以省錢?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校與圖書館在冋一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達日的地.兩人之間的距離y(米)與時間t(分鐘)之間的函數(shù)關系如圖所示.

1)根據(jù)圖象信息,當t   分鐘時甲乙兩人相遇,乙的速度為   /分鐘;

2)求點A的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了發(fā)展校園足球運動,某城區(qū)五校決定聯(lián)合購買一批足球服和足球.經(jīng)過市場調查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球服和足球,已知每套足球服比每個足球多60元,兩套足球服與三個足球的費用相等.經(jīng)洽談,甲商場的優(yōu)惠方案是:每購買20套足球服,送一個足球;乙商場的優(yōu)惠方案是:若購買足球服超過80套,則購買的足球打八折,若購買足球服不超過80套,不打折.

1)求每套足球服和每個足球的價格各是多少元;

2)若城區(qū)五校聯(lián)合購買120套足球服和)個足球,假如你是本次購買任務的負責人,你會選擇到甲、乙兩家中的哪一家商場購買更便宜?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若,且,則我們稱的差余角.例如:若,則的差余角

1)如圖1,點在直線上,射線的角平分線,若的差余角,求的度數(shù).

2)如圖2,點在直線上,若的差余角,那么有什么數(shù)量關系.

3)如圖3,點在直線上,若的差余角,且在直線的同側,請你探究是否為定值?若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖所示的方式疊放在一起(其中,,).

1)①若,則的度數(shù)為_____________

②若,則的度數(shù)為_____________

2)由(1)猜想的數(shù)量關系,并說明理由.

3)當且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請寫出角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD內部有兩個大小相同的長方形AEFG、HMCN,HMEF相交于點P,HNGF相交于點QAG=CM=x,AE=CN=y

1)用含有x、y的代數(shù)式表示長方形AEFG與長方形HMCN重疊部分的面積S四邊形HPFQ,并求出x應滿足的條件;

2)當AG=AE,EF=2PE時,

AG的長為_______;

②四邊形AEFG旋轉后能與四邊形HMCN重合,請指出該圖形所在平面內能夠作為旋轉中心的所有點,并分別說明如何旋轉的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,四邊形ABCD是菱形,MN分別在AB、AD,BM=DN,MGAD,NFAB,F、G分別在BC、CD,MGNF相交于點E;

(1)如圖,求證:四邊形AMEN是菱形;

(2)如圖,連接AC,在不添加任何輔助線的情況下,請直接寫出面積相等的四邊形;

查看答案和解析>>

同步練習冊答案