在等腰Rt△ABC中,∠BAC=90°,AB=AC,在△ABC外作∠ACM=∠ABC,點(diǎn)D為直線BC上的動(dòng)點(diǎn),過點(diǎn)D作直線CM的垂線,垂足為E,交直線AC于F.
(1)當(dāng)點(diǎn)D在線段BC上時(shí),如圖1所示,①∠EDC= 22.5 °;
②探究線段DF與EC的數(shù)量關(guān)系,并證明;
(2)當(dāng)點(diǎn)D運(yùn)動(dòng)到CB延長線上時(shí),請(qǐng)你畫出圖形,并證明此時(shí)DF與EC的數(shù)量關(guān)系.
【考點(diǎn)】全等三角形的判定與性質(zhì);等腰直角三角形.
【分析】(1)①由等腰直角三角形的性質(zhì)得出∠ABC=∠ACB=45°,求出∠BCM=67.5°,即可得出∠EDC的度數(shù);
②作∠PDE=22.5,交CE的延長線于P點(diǎn),交CA的延長線于N,證明PD=CD,得出PC=2CE,由ASA證明△DNF≌△PNC,得出DF=PC,即可得出結(jié)論;
(2)作∠PDE=22.5,交CE的延長線于P點(diǎn),交CA的延長線于N,證明PD=CD,得出PC=2CE,由ASA證明△DNF≌△PNC,得出DF=PC,即可得出結(jié)論.
【解答】(1)①解:如圖1所示:
∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠ACM=∠ABC=22.5°,
∴∠BCM=67.5°,
∵DE⊥CM,
∴∠EDC=90°﹣∠BCM=22.5°;
故答案為:22.5;
②DF=2CE.理由如下:
證明:作∠PDE=22.5,交CE的延長線于P點(diǎn),交CA的延長線于N,如圖2所示:
∵DE⊥PC,∠ECD=67.5,
∴∠EDC=22.5°,
∴∠PDE=∠EDC,∠NDC=45°,
∴∠DPC=67.5°
∴PD=CD,
∴PE=EC,
∴PC=2CE,
∵∠NDC=45°,∠NCD=45°,
∴∠NCD=∠NDC,∠DNC=90°,
∴ND=NC且∠DNC=∠PNC,
在△DNF和△PNC中,
,
∴△DNF≌△PNC(ASA),
∴DF=PC,
∴DF=2CE.
(2)DF=2CE;理由如下:
證明:作∠PDE=22.5,交CE的延長線于P點(diǎn),交CA的延長線于N,如圖3所示:
∵DE⊥PC,∠ECD=67.5,
∴∠EDC=22.5°,
∴∠PDE=∠EDC,∠NDC=45°,
∴∠DPC=67.5°
∴PD=CD,
∴PE=EC,
∴PC=2CE,
∵∠NDC=45°,∠NCD=45°,
∴∠NCD=∠NDC,∠DNC=90°,
∴ND=NC且∠DNC=∠PNC,
在△DNF和△PNC中,
,
∴△DNF≌△PNC(ASA),
∴DF=PC,
∴DF=2CE.
【點(diǎn)評(píng)】本題考查了等腰直角三角形的性質(zhì)與判定、全等三角形的判定與性質(zhì)、等腰三角形的判定;熟練掌握等腰直角三角形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,要在寬為28米的公路AB路邊安裝路燈,路燈的燈臂CD長為3米,且與燈柱BC成150°角,路燈采用圓錐形燈罩,燈罩的軸線DE與燈臂CD垂直,當(dāng)燈罩的軸線DE能過公路路面的中點(diǎn)時(shí)照效果最理想.問應(yīng)設(shè)計(jì)多高的燈柱,才能取得最理想的照明效果.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在等腰三角形紙片ABC中,AB=AC,∠A=40°,折疊該紙片,使點(diǎn)A落在點(diǎn)B處,折痕為DE,則∠CBE= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
甲乙兩人分別從距目的地6千米和10千米的兩地同時(shí)出發(fā),甲乙的速度比是3:4,結(jié)果甲比乙提前20分鐘到達(dá)目的地,求甲、乙兩人的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是一個(gè)正方體的表面展開圖,則原正方體中與“!弊炙诘拿嫦鄬(duì)的面上標(biāo)的字是( )
A.考 B.試 C.順 D.利
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ的長度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是 ;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離為 ;
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M,
①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長;
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知△ABC中,AB=AC,AB邊上的垂直平分線DE交AC于點(diǎn)E,D為垂足,若∠ABE:∠EBC=2:1,則∠A=__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com