【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點(diǎn),DECF交于點(diǎn)G.

(1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DECF,求證:;

(3)如圖3,若四邊形ABCD是平行四邊形,當(dāng)∠B=EGF時(shí),第(2)問(wèn)的結(jié)論是否成立?若成立給予證明;若不成立,請(qǐng)說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)當(dāng)∠B=EGF時(shí),成立,證明見(jiàn)解析.

【解析】

(1)由四邊形ABCD為正方形,利用正方形的性質(zhì)得到一對(duì)角為直角,相等,且AD=DC,利用同角的余角相等得到一對(duì)角相等,利用AAS得到三角形ADE與三角形DCF全等,利用全等三角形對(duì)應(yīng)邊相等即可得證;

(2)由四邊形ABCD為矩形,得到一對(duì)直角相等,利用同角的余角相等得到一對(duì)角相等,利用兩對(duì)角相等的三角形相似得到三角形ADE與三角形DCF相似,利用相似三角形對(duì)應(yīng)邊成比例即可得證;

(3)當(dāng)∠B=∠EGF時(shí),成立,理由為:如圖3,在AD的延長(zhǎng)線上取點(diǎn)M,使CM=CF,利用平行線的性質(zhì),以及同角的補(bǔ)角相等得到三角形ADE與三角形DCM相似,利用相似三角形對(duì)應(yīng)邊成比例即可得證.

(1)∵四邊形ABCD是正方形,

∴∠A=ADC=90°,AD=DC,

∴∠ADE+AED=90°,

DECF,

∴∠ADE+CFD=90°,

∴∠AED=CFD,

∴△ADE≌△DCF,

DE=CF

(2)∵四邊形ABCD是矩形,

∴∠A=ADC=90°,

DECF,

∴∠ADE+CFD=90°,DCF+CFD=90°,

∴∠ADE=DCF,

∴△ADE∽△DCF,

(3)解:當(dāng)∠B=EGF時(shí), 成立,

證明:如圖3,在AD的延長(zhǎng)線上取點(diǎn)M,使CM=CF,

則∠CMF=CFM,

ABCD,

∴∠A=CDM,

ADBC,

∴∠B+A=180°,

∵∠B=EGF,

∴∠EGF+A=180°,

∴∠AED=CFM=CMF,

∴△ADE∽△DCM,

,即 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程,下列說(shuō)法正確的是(

A. 當(dāng)k=0時(shí),方程沒(méi)有實(shí)數(shù)根 B. 當(dāng)k=1時(shí),方程有一個(gè)實(shí)數(shù)根

C. 當(dāng)k=-1時(shí),方程有兩個(gè)相等的實(shí)數(shù)根 D. 當(dāng)k≠0時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,已知∠CAB60°,D、E分別是邊AB、AC上的點(diǎn),且∠AED60°,ED+DBCE,∠CDB2CDE,則∠DCB等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC的三個(gè)內(nèi)角AB,C所對(duì)的邊分別是,下列條件中,不能判定△ABC是等腰三角形的是(

A.a3,b3c4B.abc234

C.B50°,∠C80°D.A︰∠B︰∠C112

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】的解   

的解   

的解   

的解   .…

1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫(xiě)出第⑤,⑥個(gè)方程及它們的解.

2)請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫(xiě)出第個(gè)方程及它的解,并通過(guò)計(jì)算判斷這個(gè)結(jié)論是否正確.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CDEF所截,若已知∠1=2,說(shuō)明AB//CD的理由.

解:根據(jù)__________ 得∠2=3,又因?yàn)椤?/span>1=2,

所以∠ ________ = _________ ,

根據(jù)____________________________ 得:_________ // _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問(wèn)題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來(lái)得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問(wèn)題時(shí),有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說(shuō)明理由,參考小敏思考問(wèn)題方法解決一下問(wèn)題

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫(xiě)出結(jié)論并證明;

②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)600個(gè)旅游紀(jì)念品,進(jìn)價(jià)為每個(gè)6元,第一周以每個(gè)10元的價(jià)格售出200個(gè),第二周若按每個(gè)10元的價(jià)格銷售仍可售出200個(gè),但商店為了適當(dāng)增加銷量,決定降價(jià)銷售(根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出50個(gè),但售價(jià)不得低于進(jìn)價(jià)),單價(jià)降低x元銷售銷售一周后,商店對(duì)剩余旅游紀(jì)念品清倉(cāng)處理,以每個(gè)4元的價(jià)格全部售出,如果這批旅游紀(jì)念品共獲利1250元,問(wèn)第二周每個(gè)旅游紀(jì)念品的銷售價(jià)格為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案