【題目】如圖,直線AB,CDEF所截,若已知∠1=2,說明AB//CD的理由.

解:根據(jù)__________ 得∠2=3,又因?yàn)椤?/span>1=2

所以∠ ________ = _________ ,

根據(jù)____________________________ 得:_________ // _________

【答案】對(duì)頂角相等,1,3,同位角相等,兩直線平行,ABCD,見解析

【解析】

先根據(jù)對(duì)頂角相等,得出∠2=3,再根據(jù)根據(jù)同位角相等,兩直線平行,得ABCD

解:根據(jù)對(duì)頂角相等,得∠2=3,

又因?yàn)椤?/span>1=2

所以∠1=3,

根據(jù)同位角相等,兩直線平行,得:ABCD

故答案為對(duì)頂角相等;1;3;同位角相等,兩直線平行;AB;CD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,DAC邊中點(diǎn),過D點(diǎn)作DEDF,交ABE,交BCF,連接BD.

(1)求證:△CDF≌△BED

(2)AE=4FC=3,求AB長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算并觀察下列各式:

1個(gè):(ab)(a+b)______

2個(gè):(ab)(a2+ab+b2)______;

3個(gè):(ab)(a3+a2b+ab2+b3)_______

……

這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________;

(3)利用(2)的猜想計(jì)算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應(yīng)用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點(diǎn),DECF交于點(diǎn)G.

(1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DECF,求證:;

(3)如圖3,若四邊形ABCD是平行四邊形,當(dāng)∠B=EGF時(shí),第(2)問的結(jié)論是否成立?若成立給予證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知?jiǎng)狱c(diǎn)P在函數(shù)x0的圖象上運(yùn)動(dòng),PMx軸于點(diǎn)M,PNy軸于點(diǎn)N線段PM、PN分別與直線ABy=x+1交于點(diǎn)E,FAFBE的值為( 。

A. 4 B. 2 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(2x2y)3(3x2y)

(2)(36x3-24x2+2x)÷4x

(3)(2x+y+1)(2x-y-1)

(4)(-3ax)2(5a2-3ax3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全國(guó)數(shù)學(xué)競(jìng)賽,在最近的五次選拔測(cè)試中,他倆的成績(jī)分別如下表:

根據(jù)上表解答下列問題:

(1)完成下表:

姓名

極差(分)

平均成績(jī)(分)

中位數(shù)(分)

眾數(shù)(分)

方差

小王

40

80

75

75

190

小李

(2)在這五次測(cè)試中,成績(jī)比較穩(wěn)定的同學(xué)是誰?若將80分以上(含80分)的成績(jī)視為優(yōu)秀,則小王、小李在這五次測(cè)試中的優(yōu)秀率各是多少?

(3)歷屆比賽表明,成績(jī)達(dá)到80分以上(含80分)就很可能獲獎(jiǎng),成績(jī)達(dá)到90分以上(含90分)就很可能獲得一等獎(jiǎng),那么你認(rèn)為應(yīng)選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠BAC=120°,點(diǎn) D BC 上一點(diǎn),BD 的垂直平分線交 AB 于點(diǎn)E,將△ACD 沿 AD 折疊,點(diǎn) C 恰好與點(diǎn) E 重合,則∠B 等于_______°;

查看答案和解析>>

同步練習(xí)冊(cè)答案