【題目】的解   

的解   

的解   

的解   .…

1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出第⑤,⑥個(gè)方程及它們的解.

2)請根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出第個(gè)方程及它的解,并通過計(jì)算判斷這個(gè)結(jié)論是否正確.

【答案】1;;(2,,計(jì)算見解析

【解析】

求出四個(gè)方程的解即可;
1)分別寫出第⑤,⑥個(gè)方程及它們的解即可;
2)歸納總結(jié)得出一般性規(guī)律,寫出驗(yàn)證即可.

-1的解x=0;
-1的解x=1;
-1的解x=2;
-1的解x=3;
1)⑤ -1的解x=4;⑥ -1的解x=5
2 -1的解x=n-1,
方程兩邊同時(shí)乘以(x+1),得n=2n-x+1),
解得x=n-1
經(jīng)檢驗(yàn),x=n-1是原方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,BN,DN分別平分∠ABM,∠MDC,試問∠M與∠N之間的數(shù)量關(guān)系如何?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ymxn與反比例函數(shù)交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與x軸、y軸分別交于點(diǎn)C、點(diǎn)D,AEx軸于EBFy軸于F

(1) 若mk,n=0,求AB兩點(diǎn)的坐標(biāo)(用m表示).

(2) 如圖1,若A(x1y1)、B(x2y2),寫出y1y2n的大小關(guān)系,并證明.

(3) 如圖2,M、N分別為反比例函數(shù)圖象上的點(diǎn),AMBNx軸.若,且AMBN之間的距離為5,則kb=_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算并觀察下列各式:

1個(gè):(ab)(a+b)______;

2個(gè):(ab)(a2+ab+b2)______;

3個(gè):(ab)(a3+a2b+ab2+b3)_______;

……

這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________

(3)利用(2)的猜想計(jì)算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應(yīng)用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

(2)若點(diǎn)E、F分別為AB、CA延長線上的點(diǎn),且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點(diǎn),DECF交于點(diǎn)G.

(1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DECF,求證:;

(3)如圖3,若四邊形ABCD是平行四邊形,當(dāng)∠B=EGF時(shí),第(2)問的結(jié)論是否成立?若成立給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知?jiǎng)狱c(diǎn)P在函數(shù)x0的圖象上運(yùn)動(dòng),PMx軸于點(diǎn)M,PNy軸于點(diǎn)N,線段PM、PN分別與直線ABy=x+1交于點(diǎn)E,F,AFBE的值為( 。

A. 4 B. 2 C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(2x2y)3(3x2y)

(2)(36x3-24x2+2x)÷4x

(3)(2x+y+1)(2x-y-1)

(4)(-3ax)2(5a2-3ax3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)舉行畢業(yè)典禮,需要從九(1)班的2名男生1名女生、九(2)的1名男生1名女生共5人中選出2名主持人.

1)用樹形圖或列表法列出所有可能情形;

2)求2名主持人來自不同班級(jí)的概率;

3)求2名主持人恰好11女的概率.

查看答案和解析>>

同步練習(xí)冊答案