【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),連接ACCEAB于點(diǎn)ED是直徑AB延長線上一點(diǎn),且∠BCE=∠BCD

1)求證:CD是⊙O的切線;

2)若AD8,,求CD的長.

【答案】1)見解析;(24

【解析】

1)連接OC,根據(jù)圓周角定理得到∠ACB90°,根據(jù)余角的性質(zhì)得到∠A=∠ECB,求得∠A=∠BCD,根據(jù)等腰三角形的性質(zhì)得到∠A=∠ACO,等量代換得到∠ACO=∠BCD,求得∠DCO90°,于是得到結(jié)論;

2)設(shè)BCkAC2k,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

1)證明:連接OC,

AB是⊙O的直徑,

∴∠ACB90°,

CEAB

∴∠CEB90°,

∴∠ECB+ABC=∠ABC+CAB90°,

∴∠A=∠ECB,

∵∠BCE=∠BCD

∴∠A=∠BCD

OCOA

∴∠A=∠ACO,

∴∠ACO=∠BCD

∴∠ACO+BCO=∠BCO+BCD90°,

∴∠DCO90°,

CD是⊙O的切線;

2)解:∵∠A=∠BCE,

tanAtanBCE,

設(shè)BCk,AC2k,

∵∠D=∠D,∠A=∠BCD,

∴△ACD∽△CBD

,

AD8,

CD4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)(點(diǎn)不與,重合),直線交過點(diǎn)的切線于點(diǎn),過點(diǎn)的切線于點(diǎn)

(1)求證:;

(2),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由兩個(gè)長為2,寬為1的長方形組成“7”字圖形.

1)將一個(gè)“7”字圖形按如圖擺放在平面直角坐標(biāo)系中,記為“7”字圖形,其中頂點(diǎn)位于軸上,頂點(diǎn)位于軸上,為坐標(biāo)原點(diǎn),則的值為____.

2)在(1)的基礎(chǔ)上,繼續(xù)擺放第二個(gè)“7”字圖形得頂點(diǎn),擺放第三個(gè)“7”字圖形得頂點(diǎn),依此類推,,擺放第個(gè)“7”字圖形得頂點(diǎn),,則頂點(diǎn)的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c(c0)的頂點(diǎn)為D,與y軸的交點(diǎn)為C.過點(diǎn)C的直線CA與拋物線交于另一點(diǎn)A(點(diǎn)A在對(duì)稱軸左側(cè)),點(diǎn)BAC的延長線上,連結(jié)OA,OB,DADB

(1)如圖1,當(dāng)ACx軸時(shí),

①已知點(diǎn)A的坐標(biāo)是(﹣2,1),求拋物線的解析式;

②若四邊形AOBD是平行四邊形,求證:b24c

(2)如圖2,若b=﹣2,,是否存在這樣的點(diǎn)A,使四邊形AOBD是平行四邊形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD4,將∠A向內(nèi)翻析,點(diǎn)A落在BC上,記為A1,折痕為DE.若將∠B沿EA1向內(nèi)翻折,點(diǎn)B恰好落在DE上,記為B1,則AB_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解本校1200名學(xué)生的課外閱讀的情況,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生,對(duì)他們一周的課外閱讀時(shí)間進(jìn)行了調(diào)整,井繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為______,圖①中的值為______;

(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)該校一周的課外閱讀時(shí)間大于的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),是以點(diǎn)為圓心,2為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)MN分別在AB、BC邊上,∠MDN=45°.

1)如圖1,DNAB的延長線于點(diǎn)F. 求證:;

2)如圖2,過點(diǎn)MMPDBP,過NNQBD,若,求對(duì)角線BD的長;

3)如圖3,若對(duì)角線ACDM,DF分別于點(diǎn)TE.判斷△DTN的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角邊長為1的等腰直角三角形與邊長為2的正方形在同一水平線上,三角形沿水平線從左向右勻速穿過正方形.設(shè)穿過時(shí)間為t,正方形與三角形不重合部分的面積為s(陰影部分),則st的大致圖象為( )

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案