【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=﹣x2+bx+c(c>0)的頂點(diǎn)為D,與y軸的交點(diǎn)為C.過(guò)點(diǎn)C的直線(xiàn)CA與拋物線(xiàn)交于另一點(diǎn)A(點(diǎn)A在對(duì)稱(chēng)軸左側(cè)),點(diǎn)B在AC的延長(zhǎng)線(xiàn)上,連結(jié)OA,OB,DA和DB.
(1)如圖1,當(dāng)AC∥x軸時(shí),
①已知點(diǎn)A的坐標(biāo)是(﹣2,1),求拋物線(xiàn)的解析式;
②若四邊形AOBD是平行四邊形,求證:b2=4c.
(2)如圖2,若b=﹣2,=,是否存在這樣的點(diǎn)A,使四邊形AOBD是平行四邊形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)①y=﹣x2﹣2x+1;②證明見(jiàn)解析;(2)存在這樣的點(diǎn)A,A(﹣,)
【解析】
(1)①由點(diǎn)A(﹣2,1)得到C(0,1),利用待定系數(shù)法即可求解;
②作DE⊥x軸于E,交AB于點(diǎn)F,利用頂點(diǎn)坐標(biāo)及點(diǎn)C的坐標(biāo)求得DF=,利用“AAS”證得△AFD≌△BCO,得到DF=OC,即可證得結(jié)論;
(2)由題意知頂點(diǎn)坐標(biāo)D(﹣1,c+1),設(shè)點(diǎn)A(m,﹣m2﹣2m+c),利用“AAS”證得△AFD≌△BCO,作如圖的輔助線(xiàn),證得△ANF∽△AMC,結(jié)合已知=,求得,利用比例線(xiàn)段即可求解.
(1)①∵AC∥x軸,點(diǎn)A(﹣2,1),
∴C(0,1),
將點(diǎn)A(﹣2,1),C(0,1)代入拋物線(xiàn)解析式中,得:
,
∴,
∴拋物線(xiàn)的解析式為y=﹣x2﹣2x+1;
②如圖1,過(guò)點(diǎn)D作DE⊥x軸于E,交AB于點(diǎn)F,
∵AC∥x軸,
∴EF=OC=c,
∵點(diǎn)D是拋物線(xiàn)的頂點(diǎn)坐標(biāo),
∴D(,),
∴DF=DE﹣EF==,
∵四邊形AOBD是平行四邊形,
∴AD=OB,AD∥OB,
∴∠DAF=∠OBC,
∵∠AFD=∠BCO=90°,
∴△AFD≌△BCO(AAS),
∴DF=OC,
∴=c,
即b2=4c;
(2)如圖2,
∵b=﹣2.
∴拋物線(xiàn)的解析式為y=﹣x2﹣2x+c,
∴頂點(diǎn)坐標(biāo)D(﹣1,c+1),
假設(shè)存在這樣的點(diǎn)A使四邊形AOBD是平行四邊形,
設(shè)點(diǎn)A(m,﹣m2﹣2m+c)(m<0),
過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,交AB于F,
∴∠AFD=∠EFC=∠BCO,
∵四邊形AOBD是平行四邊形,
∴AD=BO,AD∥OB,
∴∠DAF=∠OBC,
∴△AFD≌△BCO(AAS),
∴AF=BC,DF=OC,
過(guò)點(diǎn)A作AM⊥y軸于M,交DE于N,
∴DE∥CO,
∴△ANF∽△AMC,
∴=,
∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,
∴,
∴,
∴點(diǎn)A的縱坐標(biāo)為﹣(﹣)2﹣2×(﹣)+c=c﹣<c,
∵AM∥x軸,
∴點(diǎn)M的坐標(biāo)為(0,c﹣),N(﹣1,c﹣),
∴CM=c﹣(c﹣)=,
∵點(diǎn)D的坐標(biāo)為(﹣1,c+1),
∴DN=(c+1)﹣(c﹣)=,
∵DF=OC=c,
∴FN=DN﹣DF=﹣c,
∵=,
∴,
∴c=,
∴c﹣=,
∴點(diǎn)A縱坐標(biāo)為,
∴A(﹣,),
∴存在這樣的點(diǎn)A,使四邊形AOBD是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,為邊上的高,分別為邊上的點(diǎn),將分別沿折疊,使點(diǎn)落在的延長(zhǎng)線(xiàn)上點(diǎn)處,點(diǎn)落在點(diǎn)處,連接,若,則的長(zhǎng)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年3月,我國(guó)湖北省A、B兩市遭受?chē)?yán)重新冠肺炎影響,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運(yùn)物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運(yùn)往A、B兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用分別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.
(1)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求w與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)經(jīng)過(guò)當(dāng)?shù)卣拇罅χС,?/span>D市到B市的運(yùn)輸時(shí)間縮短了,運(yùn)費(fèi)每噸減少m元(m>0),其余路線(xiàn)運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的⊙O恰為△ABC的外接圓,∠ABC的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE∥AC交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn);
(2)若AB=25,BC=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,Rt△OAB的直角頂點(diǎn)B在x軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若△ACD的面積是2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:點(diǎn)是軸上一點(diǎn),將函數(shù)的圖象位于直線(xiàn)右側(cè)部分,以軸為對(duì)稱(chēng)軸翻折,得到新的函數(shù)的圖象,我們稱(chēng)函數(shù)是函數(shù)的相關(guān)函數(shù),函數(shù)的圖象記作,函數(shù)的圖象未翻折部分記作,圖象和起來(lái)記作圖象.
例如:函數(shù)的解析式為,當(dāng)時(shí),它的相關(guān)函數(shù)的解析式為
(1)如圖,函數(shù)的解析式為,當(dāng)時(shí),它的相關(guān)函數(shù)的解析式為_________;
(2)函數(shù)的解析式為,當(dāng)時(shí),圖象上某點(diǎn)的縱坐標(biāo)為2,求該點(diǎn)的橫坐標(biāo);
(3)函數(shù)的解析式為,
①已知點(diǎn)A、B的坐標(biāo)分別為、,當(dāng)時(shí),且圖像與線(xiàn)段只有一個(gè)共點(diǎn)時(shí),結(jié)合函數(shù)圖象,求的取值范圍;
②若,點(diǎn)是圖象上任意一點(diǎn),當(dāng)時(shí),的最大值始終保持不變,求的取值范圍(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),連接AC,CE⊥AB于點(diǎn)E,D是直徑AB延長(zhǎng)線(xiàn)上一點(diǎn),且∠BCE=∠BCD.
(1)求證:CD是⊙O的切線(xiàn);
(2)若AD=8,=,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)求的面積;
(3)根據(jù)圖象直接寫(xiě)出的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式變得更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息回答下列問(wèn)題:
(1)本次調(diào)查共調(diào)查了______名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為______;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用“微信”溝通的學(xué)生有多少名?
(4)某天甲、乙兩名同學(xué)都想從“微信”、“QQ”、“電話(huà)”三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com