【題目】如圖,在RtABC中,∠ACB=90°B=60°,BC=2,A′B′C′可以由ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長(zhǎng)為( 。

A. 4 B. 6 C. 3 D. 3

【答案】A

【解析】試題分析:Rt△ABC中,∠ACB=90°∠B=60°,BC=2,

∴∠CAB=30°,故AB=4

∵△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且AB′、A′在同一條直線上,

∴AB=A′B′=4,AC=A′C,

∴∠CAA′=∠A′=30°,

∴∠ACB′=∠B′AC=30°,

∴AB′=B′C=2,

∴AA′=2+4=6

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC⊥BC,BD⊥AD,AC BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)△OAB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,ACB90°ACBC,ABC的高CD與角平分線AE相交點(diǎn)F,過點(diǎn)CCHAEG,ABH

1)求BCH的度數(shù)

2)求證CEBH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】買一個(gè)足球需要m元,買一個(gè)籃球需要n元,則買4個(gè)足球和7個(gè)籃球共需要多少元(

A.4m+7nB.28mnC.7m+4nD.11mn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定一種新的運(yùn)算:a b = a×b + a - b ,則2 3=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(x+2)(2x﹣3)=2x2+mx﹣6,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=15,AC=13,高AD=12,則BC的長(zhǎng)是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠BAC=60° ,B=80° ,DE垂直平分ACBC于點(diǎn)D,AC于點(diǎn)E.

(1)求∠BAD的度數(shù);

(2)AB=10,BC=12,ABD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:
(1)﹣2ax2+8ay2;
(2)4m2﹣n2+6n﹣9.

查看答案和解析>>

同步練習(xí)冊(cè)答案