【題目】如圖,△ABC中,以B為圓心,BC長為半徑畫弧,分別交AC,AB于D,E,連接BD,DE,若∠A=30°,AB=AC,則∠BDE的度數為( ).
A.52.5°B.60°C.67.5°D.75°
科目:初中數學 來源: 題型:
【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調查,并把調查結果繪制成兩幅不完整的統(tǒng)計圖.請你根據圖中提供的信息,回答下列問題:
(1)這次被調查的學生共有多少人?
(2)若該校約有2000名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?
(3)請將條形統(tǒng)計圖補充完整;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC三頂點A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'與△ABC關于y軸對稱.
(1)直接寫出A'、B'、C'的坐標;
(2)畫出△A'B'C';
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,點D,E分別在AC,BC上,且CD·BC=AC·CE,以E為圓心,DE長為半徑作圓,⊙E經過點B,與AB,BC分別交于點F,G.
(1)求證:AC是⊙E的切線;
(2)若AF=4,CG=5,
①求⊙E的半徑;
②若Rt△ABC的內切圓圓心為I,則IE= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,若分別以△ABC的AC、BC兩邊為邊向外側作的四邊形ACDE和BCFG為正方形,則稱這兩個正方形為外展雙葉正方形.
(1)發(fā)現:如圖2,當∠C=90°時,求證:△ABC與△DCF的面積相等.
(2)引申:如果∠C90°時,(1)中結論還成立嗎?若成立,請結合圖1給出證明;若不成立,請說明理由;
(3)運用:如圖3,分別以△ABC的三邊為邊向外側作的四邊形ACDE、BCFG和ABMN為正方形,則稱這三個正方形為外展三葉正方形.已知△ABC中,AC=3,BC=4.當∠C=_____°時,圖中陰影部分的面積和有最大值是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的二次方程ax2+bx+c=0沒有實數根,一位老師改動了方程的二次項系數后,得到的新方程有兩個根為12和4;另一位老師改動原來方程的某一個系數的符號,所得到的新方程的兩個根為-2和6,那么=________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數為( )
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調查中發(fā)現:從零時起,井內空氣中CO的濃度達到4 mg/L,此后濃度呈直線型增加,在第7小時達到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據題中相關信息回答下列問題:
(1)求爆炸前后空氣中CO濃度y與時間x的函數關系式,并寫出相應的自變量取值范圍;
(2)當空氣中的CO濃度達到34 mg/L時,井下3 km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時,才能回到礦井開展生產自救,求礦工至少在爆炸后多少小時才能下井?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________,∠ABC=________°.(直接填寫結果)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com