【題目】兩建筑物ABCD的水平距離為30米,如圖所示,從A點測得太陽落山時,太陽光線AC照射到AB后的影子恰好在CD的墻角時的角度∠ACB=60°,又過一會兒,當(dāng)AB的影子正好到達(dá)CD的樓頂D時的角度∠ADE=30°,DEABE,則建筑物CD的高是多少米?≈1.732,結(jié)果保留兩位有效數(shù)字)

【答案】35m

【解析】試題分析:通過投影的知識結(jié)合題意構(gòu)造直角三角形,ABCAED,在這兩個直角三角形中,分別求出ABAE的長;根據(jù)CDABAE計算可得建筑物CD的高.

試題解析:

解:根據(jù)題意可得:在ABC中有:ABBC×tan60°BC30,

AED中有:∠ADE30°,ED30,

所以AEED×tan30°=,

所以CDEBABAE=30≈35(米).

故建筑物CD的高是35米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中有ABC,建立平面直角坐標(biāo)系后,點O的坐標(biāo)是(0,0).

(1)以O為位似中心,作A′B′C′ABC,A′B′C′ABC相似比為2:1,且A′B′C′在第二象限;

(2)在上面所畫的圖形中,若線段AC上有一點D,它的橫坐標(biāo)為k,點DA′C′上的對應(yīng)點D′的橫坐標(biāo)為﹣2﹣k,則k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點P是線段AD上的一個動點,OBD的中點,PO的延長線交BCQ

1)求證:OP=OQ ;

2)若AD=8cmAB=6cm,點P從點A出發(fā),以 的速度向點D 運動(不與D重合).設(shè)點P運動的時間為t秒,請用t表示PD的長;

3)當(dāng)t為何值時,四邊形PBQD是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂樂家附近的商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,AB為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費50元(含50元)以上,就能獲得一次轉(zhuǎn)盤的機(jī)會,如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)9折、8折、7折區(qū)域,顧客就可以獲得相應(yīng)的優(yōu)惠

1)某顧客消費40元,是否可以獲得轉(zhuǎn)盤的機(jī)會?

2)某顧客正好消費66元,他轉(zhuǎn)一次轉(zhuǎn)盤,獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1y2x+4y軸交于A點,與x軸交于點B,經(jīng)過A點的直線l2與直線l1所夾的銳角為45°.

1)過點BCBAB,交l2C,求點C的坐標(biāo).

2)求l2的函數(shù)解析式.

3)在直線l1上存在點M,直線l2上存在點N,使得點A、O、M、N四點組成的四邊形是平行四邊形,請直接寫出點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程組的解滿足x為非正數(shù),y為負(fù)數(shù).

(1)m的取值范圍;

(2)化簡:|m3||m+2|;

(3)m的取值范圍內(nèi),當(dāng)m為何整數(shù)時,不等式2mx+x2m+1的解為x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級一班的暑假活動安排中,有一項是小制作評比.作品上交時限為81日至30日,班委會把同學(xué)們交來的作品按時間順序每5天組成一組,對每一組的件數(shù)進(jìn)行統(tǒng)計,繪制成如圖所示的統(tǒng)計圖.已知從左到右各矩形的高度比為23461.第三組的頻數(shù)是12.請你回答:

1)本次活動共有 件作品參賽;

2)若將各組所占百分比繪制成扇形統(tǒng)計圖,那么第四組對應(yīng)的扇形的圓心角是 度。

3)本次活動共評出2個一等獎和3個二等獎及三等獎、優(yōu)秀獎若干名,對一、二等獎作品進(jìn)行編號并制作成背面完全一致的卡片,背面朝上的放置,隨機(jī)抽出兩張卡片,抽到的作品恰好一個是一等獎,一個是二等獎的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQMN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達(dá)C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市在新農(nóng)村改造工程中需要修建一段東西方向全長1000米的道路(記作AB).已知C點周圍350米范圍內(nèi)有一電力設(shè)施區(qū)域.在A處測得CA的北偏東60°方向上,B處測得CB的北偏西45°方向上.(≈1.732,≈1.414)

(1)道路AB是否穿過電力設(shè)施區(qū)域?為什么?

(2)在施工250米后為了盡量減少施工對城市交通所造成的影響,加快了施工進(jìn)度實際工作效率變成了原計劃工作效率的1.5,結(jié)果提前5天完成了修路任務(wù),則原計劃每天修路多少米?

查看答案和解析>>

同步練習(xí)冊答案