【題目】如圖,ABC,C=90,AB=10cm,AC=8cm,P從點A開始出發(fā)向點C2cm/s的速度移動,QB點出發(fā)向點C1cm/s的速度移動,P、Q分別同時從A,B出發(fā),幾秒后四邊形APQB是△ABC面積的

【答案】2

【解析】

設(shè)t秒后四邊形APQB是△ABC面積的,利用勾股定理計算出BC,用時間t表示出CQCP的長度,然后可表示出△PCQ的面積,由面積關(guān)系建立方程求解即可.

解:設(shè)t秒后四邊形APQB是△ABC面積的,

RtABC中,cm,

Rt三角形PCQ中,CQ=BC-BQ=6-t,CP=AC-AP=8-2t,

由面積關(guān)系可得

化簡得,解得,,

當(dāng)t=8時,6-t=-2,不符合題意,舍去,

所以2秒后四邊形APQB是△ABC面積的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19 m),另外三邊利用學(xué)校現(xiàn)有總長38 m的鐵欄圍成.

(1)若圍成的面積為180 m2,試求出自行車車棚的長和寬;

(2)能圍成面積為200 m2的自行車車棚嗎?如果能,請你給出設(shè)計方,如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料

我們通過下列步驟估計方程2x2+x﹣2=0的根的所在的范圍.

第一步:畫出函數(shù)y=2x2+x﹣2的圖象,發(fā)現(xiàn)圖象是一條連續(xù)不斷的曲線,且與x軸的一個

交點的橫坐標(biāo)在0,1之間.

第二步:因為當(dāng)x=0時,y=﹣2<0;當(dāng)x=1時,y=1>0.

所以可確定方程2x2+x﹣2=0的一個根x1所在的范圍是0<x1<1.

第三步:通過取01的平均數(shù)縮小x1所在的范圍;

x=,因為當(dāng)x=時,y<0,

又因為當(dāng)x=1時,y>0,

所以<x1<1.

(1)請仿照第二步,通過運算,驗證2x2+x﹣2=0的另一個根x2所在范圍是﹣2<x2<﹣1;

(2)在﹣2<x2<﹣1的基礎(chǔ)上,重復(fù)應(yīng)用第三步中取平均數(shù)的方法,將x2所在范圍縮小至m<x2<n,使得n﹣m≤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)yax2+bx+ca≠0)的圖象于x軸的交點坐標(biāo)分別為(x1,0),(x2,0),且x1x2,圖象上有一點Mx0,y0)在x軸下方,對于以下說法:①b24ac0xx0是方程ax2+bx+cy0的解③x1x0x2ax0x1)(x0x2)<0其中正確的是( 。

A.①③④B.①②④C.①②③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)決定把一塊長,寬的矩形空地建成居民健身廣場,設(shè)計方案如圖,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為大小、形狀都相同的矩形),空白區(qū)域為活動區(qū),且四周的4個出口寬度相同,其寬度不小于,不大于,設(shè)綠化區(qū)較長邊為,活動區(qū)的面積為.為了想知道出口寬度的取值范圍,小明同學(xué)根據(jù)出口寬度不小于,算出.

(1)的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;

(2)求活動區(qū)的最大面積;

(3)預(yù)計活動區(qū)造價為50/,綠化區(qū)造價為40/,若社區(qū)的此項建造投資費用不得超過72000元,求投資費用最少時活動區(qū)的出口寬度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F.

(1)試說明DF是⊙O的切線;

(2)AC=3AE=6,求tanC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,點F在BC上,連DF與AB的延長線交于點G.

(1)求證:CDF∽△BGF;

(2)當(dāng)點F是BC的中點時,過F作EFCD交AD于點E,若AB=6cm,EF=4cm,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎(chǔ)上,進一步證明( )

A.AB=ADACBDB.AB=ADAC=BDC.A=∠BAC=BDD.ACBD互相垂直平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,2×2網(wǎng)格(每個小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個格點.拋物線l的解析式為n為整數(shù))l經(jīng)過這九個格點中的三個,則滿足這樣條件的拋物線條數(shù)為_________

查看答案和解析>>

同步練習(xí)冊答案