【題目】如圖,將一個等腰直角三角形按圖示方式依次翻折,則下列說法正確的個數(shù)有(

①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周長等于BC的長.

A. 0個; B. 1個; C. 2個; D. 3.

【答案】C

【解析】

根據(jù)折疊的性質(zhì)可得出∠DBC=22.5°,△DEC和△DEF均是等腰直角三角形,結(jié)合選項(xiàng)所述即可判斷出正確與否.

解:①由折疊的性質(zhì)得,∠BDF=22.5°,∠FDE=CDE=45°,
DF不平分∠BDE
故①錯誤,
②∵∠ABC=2DBC,
∴∠DBC=22.5°,∠DFC=DCB=45°=DBF+BDF,
∴∠DBF=BDF=22.5°,
BF=DF,
故②正確,
③由折疊的性質(zhì)可得出△DEC和△DEF均是等腰直角三角形,
又∵BF=DF
∴△CED的周長=CE+DE+CD=CE+FE+BF=BC,
故③正確,

綜上,②③正確,共2個.
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,D為邊AC的中點(diǎn)AEEC,BD=EC

1求證:BDA≌△CEA;

2請判斷ADE是什么三角形并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P在第一象限,△ABP是邊長為2的等邊三角形,當(dāng)點(diǎn)Ax軸的正半軸上運(yùn)動時,點(diǎn)B隨之在y軸的正半軸上運(yùn)動,運(yùn)動過程中,點(diǎn)P到原點(diǎn)的最大距離是______;若將△ABPPA邊長改為,另兩邊長度不變,則點(diǎn)P到原點(diǎn)的最大距離變?yōu)?/span>______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:整式與分式
(1)(2x+1)(2x﹣1)﹣(x+1)(3x﹣2)
(2)( ﹣x+1)÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達(dá)碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )

A.10 海里
B.10 海里
C.10 海里
D.20 海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個動點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點(diǎn)C的直線MNAB,DAB邊上一點(diǎn),過點(diǎn)DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD;

(2)當(dāng)DAB中點(diǎn)時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,∠ACB=90°,點(diǎn)D在AC上,DE⊥AB垂足為E,交BC的延長線于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過點(diǎn)G作GH⊥AD,垂足為H,與DE的延長線交于點(diǎn)M,如圖二,找出圖中與AB相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)對(a,b)、(c,d),定義:當(dāng)且僅當(dāng)a=c且b=d時,(a,b)=(c,d);并定義其運(yùn)算如下: (a,b)※(c,d)=(ac﹣bd,ad+bc),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x,y)※(1,﹣1)=(1,3),則xy的值是(
A.﹣1
B.0
C.1
D.2

查看答案和解析>>

同步練習(xí)冊答案