【題目】如圖一,∠ACB=90°,點D在AC上,DE⊥AB垂足為E,交BC的延長線于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過點G作GH⊥AD,垂足為H,與DE的延長線交于點M,如圖二,找出圖中與AB相等的線段,并證明.
【答案】
(1)解:∵DE=EB,EG=EB,DE⊥AB,
∴DE=EB=EG,
∴∠EGD=∠EDG=∠EDB=∠EBD=45°,
∴∠AGD=∠FDB=135°,
∵∠ACB=90°,∠AED=90°,∠ADE=∠FDC,
∴∠A=∠F,
∴∠ADG=∠FBD,
在△ADG和△FDB中
∴△ADG≌△FDB,
∴AG=DF;
(2)解:∵DE=EB,EG=EB,
∴DE=EB=EG,∵DE⊥AB,
在△AED和△FEB中,
∴△AED≌△MEB,
∴AE=EM,
∴AE+EB=EM+DE,
即AB=DM.
【解析】(1)根據(jù)已知條件得到DE=EB=EB,∠EGD=∠EGD=∠EDB=∠EBD=45°,進而證得∠AGD=∠FDB=135°,根據(jù)三角形內(nèi)角和證得∠A=∠F,由三角形外角定理證得∠ADG=∠FBD,根據(jù)三角形的判定證得△ADG≌△FDB,由全等三角形的判定即可證得結(jié)論;(2)根據(jù)已知條件得到△AED≌△FEB,由全等三角形的性質(zhì)得到AE=EM,即可得到結(jié)論.
科目:初中數(shù)學 來源: 題型:
【題目】(1)填表:
a | 0.000 001 | 0.001 | 1 | 1 000 | 1 000 000 |
(2)由上表你發(fā)現(xiàn)了什么規(guī)律?請用語言敘述這個規(guī)律:______________________________.
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
①已知=1.442,則=__________,=__________;
②已知=0.076 96,則=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一個等腰直角三角形按圖示方式依次翻折,則下列說法正確的個數(shù)有( )
①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周長等于BC的長.
A. 0個; B. 1個; C. 2個; D. 3個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,D為射線BA上一點,連接DC,且DC=BC.
(1)如圖1,若DC⊥AC,AB= ,求CD的長;
(2)如圖2,若E為AC上一點,且CE=AD;連接BE,BE=2CE,連接DE并延長交BC于F.求證:DF=3EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個數(shù)能否被99整除是從這個數(shù)的末位開始,兩位一段,看看這些數(shù)段的和能否被99整除.像這樣能夠被99整除的數(shù),我們稱之為“長久數(shù)”.例如542718,因為18+27+54=99,所以542718能夠被99整除;又例如25146,因為46+51+2=99,所以25146能夠被99整除.
(1)若 這個三位數(shù)是“長久數(shù)”,求a的值;
(2)在(1)中的三位數(shù)的首位和個位與十位之間加上和為9的兩個數(shù)字,讓其成為一個五位數(shù),該五位數(shù)仍是“長久數(shù)”,求這個五位數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小強進行百米賽跑,小明比小強跑得快,如果兩人同時起跑,小明肯定贏,如圖所示,現(xiàn)在小明讓小強先跑_______米,直線__________表示小明的路程與時間的關(guān)系,大約_______秒時,小明追上了小強,小強在這次賽跑中的速度是________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.4的平方根是2
B.點(﹣3,﹣2)關(guān)于x軸的對稱點是(﹣3,2)
C. 是無理數(shù)
D.無理數(shù)就是無限小數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com