【題目】如圖,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為D,tan∠ACD=,AB=5,那么CD的長是_____.
【答案】2.4
【解析】根據(jù)余角的性質(zhì)得到∠B=∠ACD,由tan∠ACD=,得到tan∠B==,設(shè)AC=3x,BC=4x,根據(jù)勾股定理得到AC=3,BC=4,根據(jù)三角形面積的公式即可得到結(jié)論.
解:∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=∠BCD+∠B=90°,
∴∠B=∠ACD,
∵tan∠ACD=,
∴tan∠B==,
設(shè)AC=3x,BC=4x,
∵AC2+BC2=AB2,
∴(3x)2+(4x)2=52,
解得x=1,
∴AC=3,BC=4,
∵S△ABC=AB×CD=AC×BC,
∴CD==2.4,
故答案為:2.4.
“點(diǎn)睛”本題考查了解直角三角形,勾股定理,三角形的面積公式,熟記三角形的面積公式是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,按以下步驟作圖:①分別以A、B為圓心,大于AB的長為半徑畫弧,兩弧相交于點(diǎn)M、N;②作直線MN交AC于點(diǎn)D,連接BD.若CD=CB,∠A=35°,則∠C等于( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段a=4cm,線段b=9cm,線段c是線段a、b的比例中項(xiàng),則線段c等于( )
A.5cmB.6cmC.13cmD.36cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的邊長是13,O是對角線的交點(diǎn),過O點(diǎn)的三條直線將菱形分成陰影和空白部分.若菱形一條對角線長為10,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有若干個(gè)相同的紅球,為了用估計(jì)袋中紅球的數(shù)量,八(9)班學(xué)生在數(shù)學(xué)實(shí)驗(yàn)室分組做摸球?qū)嶒?yàn):每組先將10個(gè)與紅球大小形狀完全相同的白球裝入袋中,攪勻后從中隨機(jī)摸出一個(gè)球并記下顏色,再把它放回袋中,不斷重復(fù).下表是這次活動(dòng)統(tǒng)計(jì)匯總各小組數(shù)據(jù)后獲得的全班數(shù)據(jù)統(tǒng)計(jì)表:
摸球的次數(shù)s | 150 | 300 | 600 | 900 | 1200 | 1500 |
摸到白球的頻數(shù)n | 63 | a | 247 | 365 | 484 | 606 |
摸到白球的頻率 | 0.420 | 0.410 | 0.412 | 0.406 | 0.403 | b |
(1)按表格數(shù)據(jù)格式,表中的a=;b=;
(2)請估計(jì):當(dāng)次數(shù)s很大時(shí),摸到白球的頻率將會(huì)接近;
(3)請推算:摸到紅球的概率是(精確到0.1);
(4)試估算:口袋中紅球有多少只?
(5)解決了上面4個(gè)問題后,請你從統(tǒng)計(jì)與概率方面談一條啟示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)如圖①, 的內(nèi)角 的平分線與外角 的平分線相交于 點(diǎn), ,求 的度數(shù).
(2)如圖,四邊形 中,設(shè) , , 為四邊形 的內(nèi)角 與外角 的平分線所在直線相交而形成的銳角.
①如圖②,若 ,求 的度數(shù).(用 、 的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com