【題目】如圖,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

【答案】
(1)證明:在正方形ABCD中,

,

∴△CBE≌△CDF(SAS).

∴CE=CF


(2)解:GE=BE+GD成立.

理由是:∵由(1)得:△CBE≌△CDF,

∴∠BCE=∠DCF,

∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,

又∵∠GCE=45°,∴∠GCF=∠GCE=45°.

,

∴△ECG≌△FCG(SAS).

∴GE=GF.

∴GE=DF+GD=BE+GD.


【解析】(1)由DF=BE,四邊形ABCD為正方形可證△CEB≌△CFD,從而證出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可證得△ECG≌△FCG,即EG=FG=GD+DF.又因為DF=BE,所以可證出GE=BE+GD成立.
【考點精析】根據(jù)題目的已知條件,利用正方形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a22a30,求代數(shù)式(2a122a+1)(a1)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
①畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
②請畫出△ABC關(guān)于原點對稱的△A2B2C2 , 并寫出點A2、B2、C2坐標;
③請畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后△A3B3C3 , 并寫出點A3、B3、C3坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周六媽媽從新世紀購物回來,5斤蘑菇和1斤牛肉共40元,媽媽嘮叨:“上周也是買同樣多才花了35元,價格上漲太厲害了.”在看書的爸爸:“剛才聽老張說蘑菇單價上漲40%,牛肉單價上漲10%”,在學習的小強想應(yīng)該怎樣通過列方程(組)求解今天蘑菇、牛肉的單價呢?請聰明的你幫小強解決這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為(
A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學團委會開展書法、誦讀、演講、征文四個項目(每人只參加一個項目)的比賽,初三(1)班全體同學都參加了比賽,為了解比賽的具體情況,小明收集整理數(shù)據(jù)后,繪制了以下不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖,根據(jù)圖表中的信息解答下列各題:

(1)初三(1)班的總?cè)藬?shù)為 ,扇形統(tǒng)計圖中“征文”部分的圓心角度數(shù)為 度;

(2)請把折線統(tǒng)計圖補充完整;

(3)平平和安安兩個同學參加了比賽,請用“列表法”或“畫樹狀圖法”,求出他們參加的比賽項目相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,當過O點畫不重合的2條射線時,共組成1個角;當過O點畫不重合的3條射線時,共組成3個角;當過O點畫不重合的4條射線時,共組成6個角;….根據(jù)以上規(guī)律,當過O點畫不重合的10條射線時,共組成( )個角.

A.28
B.36
C.45
D.55

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為D,tan∠ACD=,AB=5,那么CD的長是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=8,點E,F(xiàn)分別在AB,AD上,且AE=AF,過點E作EG∥AD交CD于點G,過點F作FH∥AB交BC于點H,EG與FH交于點O.當四邊形AEOF與四邊形CGOH的周長之差為12時,AE的值為(
A.6.5
B.6
C.5.5
D.5

查看答案和解析>>

同步練習冊答案