【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標原點,CD垂直于x軸,D(5,4),AD=2.若動點E、F同時從點O出發(fā),E點沿折線OA→AD→DC運動,到達C點時停止;F點沿OC運動,到達C點時停止,它們運動的速度都是每秒1個單位長度.設E運動x秒時,△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )
A.
B.
C.
D.
【答案】C
【解析】解:∵D(5,4),AD=2.
∴OC=5,CD=4,OA= =5,
∴運動x秒(x<5)時,OE=OF=x,
作EH⊥OC于H,AG⊥OC于點G,
∴EH∥AG,
∴△EHO∽△AGO,
,
即: ,
∴EH= x,
∴S△EOF= OFEH= ×x× x= x2,
故A、B選項錯誤;
當點F運動到點C時,點E運動到點A,此時點F停止運動,點E在AD上運動,△EOF的面積不變,
點在DC上運動時,如右圖,
EF=11﹣x,OC=5,
∴S△EOF= OCCE= ×(11﹣x)×5=﹣ x+ 是一次函數(shù),故C正確,
故選:C.
首先根據(jù)點D的坐標求得點A的坐標,從而求得線段OA和線段OC的長,然后根據(jù)運動時間即可判斷三角形EOF的面積的變化情況.
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感.他驚喜的發(fā)現(xiàn):當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明.下面是小聰利用圖1證明勾股定理的過程:
(1)將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°.求證:a2+b2=c2.
(2)請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.
求證:a2+b2=c2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,∠C=45°,AD是BC邊上的高,∠ABC的平分線BE交AD于點F,則圖中共有等腰三角形( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC>AB,AD平分∠BAC,點D到點B與點C的距離相等,過點D作DE⊥BC于點E.
(1)求證:BE=CE;
(2)請直接寫出∠ABC,∠ACB,∠ADE三者之間的數(shù)量關(guān)系;
(3)若∠ACB=40°,∠ADE=20°,求∠DCB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,點D在AC邊上,點E在BC邊上,且∠AED=∠B,若AB=10,BE=5,AE=2 ,則線段CE的長為( )
A.
B.8
C.2
D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,D是AC邊上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中正確的個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在8×5的正方形網(wǎng)格中,每個小正方形的邊長均為1,△ABC的三個頂點均在小正方形的頂點上.
(1)在圖1中畫△ABD(點D在小正方形的頂點上),使△ABD的周長等于△ABC的周長,且以A,B,C,D為頂點的四邊形是軸對稱圖形;
(2)在圖2中畫△ABE(點E在小正方形的頂點上),使△ABE的周長等于△ABC的周長,且以A,B,C,E為頂點的四邊形是中心對稱圖形,并直接寫出該四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com