【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感.他驚喜的發(fā)現(xiàn):當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用面積法來證明.下面是小聰利用圖1證明勾股定理的過程:

(1)將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB90°.求證:a2b2c2.

(2)請參照上述證法,利用圖2完成下面的證明.

將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB90°.

求證:a2b2c2.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

證明勾股定理時(shí),用幾個(gè)全等的直角三角形拼成一個(gè)規(guī)則的圖形,然后利用大圖形的面積等于幾個(gè)小圖形的面積和,化簡整理即可得到勾股定理表達(dá)式.具體:(1) 連接DB,過點(diǎn)DBC邊上的高DF,則DFECba,表示出S四邊形ADCB, 兩者相等,整理即可得證; (2)證法() 首先連結(jié)BD,過點(diǎn)BDE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證; 證法二:連接BD,過點(diǎn)BDE邊上的高BF,則BFba,表示出S五邊形ACBED,兩者相等,整理即可得證.

(1)證明:連接DB,過點(diǎn)DBC邊上的高DF,則DFECba.

S四邊形ADCBSACDSABCb2ab,

又∵S四邊形ADCBSADBSDCBc2a(ba)

b2abc2a(ba).

a2b2c2.

(2)證法一:連接BD,過點(diǎn)BDE邊上的高BF,則BFba.

S五邊形ACBEDSACBSABESAEDabb2ab,

又∵S五邊形ACBEDSACBSABDSBDEabc2a(ba),

abb2ababc2a(ba)

a2b2c2.

證法二:連接BD,過點(diǎn)BDE邊上的高BF,則BFba

S五邊形ACBEDS梯形ACBESAEDb(ab)ab,

又∵S五邊形ACBEDSACBSABDSBEDabc2a(ba)

b(ab)ababc2a(ba),

a2b2c2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實(shí)數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.

(1)求直線AB和OB的解析式.
(2)求拋物線的解析式.
(3)若點(diǎn)P為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD、BD.問△BOD的面積是否存在最大值?若存在,求出這個(gè)最大值并寫出此時(shí)點(diǎn)D的坐標(biāo);若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上所對應(yīng)的數(shù)為﹣2

1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長度,求點(diǎn)B所對應(yīng)的數(shù);

2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.

3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過多長時(shí)間A,B兩點(diǎn)相距4個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高速公路的同一側(cè)有A、B兩城鎮(zhèn),如圖,它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之間建一個(gè)出口P,使A、B兩城鎮(zhèn)到P的距離之和最。筮@個(gè)最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,點(diǎn)O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D,E,F(xiàn)是垂足,且AB=5,BC=4,AC=3,則點(diǎn)O到三邊AB,AC,BC的距離分別是( )

A. 1,1,1 B. 2,2,2 C. 1,1.5,2 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(組):

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初二年級教師對試卷講評課中學(xué)生參與情況進(jìn)行調(diào)查,調(diào)查項(xiàng)目分為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).調(diào)查組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制了如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在扇形統(tǒng)計(jì)圖中,項(xiàng)目主動(dòng)質(zhì)疑所在的扇形的圓心角的度數(shù)為______度;

(2)請將頻數(shù)分布直方圖補(bǔ)充完整;

(3)如果全市有6000名初三學(xué)生,那么在試卷評講課中,獨(dú)立思考的初二學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC中,∠BAD=∠EBC,ADBEF.

(1)試說明 : ∠ABC=∠BFD ;

(2)若∠ABC=35°,EGAD,EHBE,求∠HEG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點(diǎn),CD垂直于x軸,D(5,4),AD=2.若動(dòng)點(diǎn)E、F同時(shí)從點(diǎn)O出發(fā),E點(diǎn)沿折線OA→AD→DC運(yùn)動(dòng),到達(dá)C點(diǎn)時(shí)停止;F點(diǎn)沿OC運(yùn)動(dòng),到達(dá)C點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是每秒1個(gè)單位長度.設(shè)E運(yùn)動(dòng)x秒時(shí),△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案