【題目】如圖,在ABC中,AB=AC,DBC中點,AEBD,且AE=BD.

1)求證:四邊形AEBD是矩形;

2)連接CEAB于點F,若BE=2,AE=2,求EF的長.

【答案】1)見解析;(2EF.

【解析】

1)根據(jù)有一個角是直角的平行四邊形是矩形即可判斷;

2)利用勾股定理求出EC,證明△AEF∽△BCF,推出,由此即可解決問題.

1)證明:∵AEBD,AEBD,

∴四邊形AEBD是平行四邊形,

ABAC,DBC的中點,

ADBC,

∴∠ADB90°,

∴四邊形AEBD是矩形;

2)解:∵四邊形AEBD是矩形,

∴∠AEB90°,

AE2,BE2

BC4,

EC,

AEBC,

∴△AEF∽△BCF

EFEC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點,,分別是邊,,上的點,且,,相交于點,若點的重心.則以下結論:①線段,的三條角平分線;②的面積是面積的一半;③圖中與面積相等的三角形有5個;④的面積是面積的.其中一定正確的結論有(

A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點,過點C的直線交AB的延長線于點D,AEDC,垂足為E,F(xiàn)是AE與O的交點,AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016浙江省衢州市)如圖1,在直角坐標系xoy中,直線ly=kx+bx軸,y軸于點E,F,點B的坐標是(2,2),過點B分別作x軸、y軸的垂線,垂足為AC,點D是線段CO上的動點,以BD為對稱軸,作與BCD或軸對稱的BCD

(1)當∠CBD=15°時,求點C的坐標.

(2)當圖1中的直線l經過點A,且時(如圖2),求點DCO的運動過程中,線段BC掃過的圖形與OAF重疊部分的面積.

(3)當圖1中的直線l經過點D,C時(如圖3),以DE為對稱軸,作于DOE或軸對稱的DOE,連結OC,OO,問是否存在點D,使得DOECOO相似?若存在,求出k、b的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(感知)如圖①在等邊ABC和等邊ADE中,連接BD,CE,易證:ABD≌△ACE;

(探究)如圖②△ABCADE中,∠BAC=DAE,∠ABC=ADE,求證:ABD∽△ACE;

(應用)如圖③,點A的坐標為(0,6),AB=BO,∠ABO=120°,點Cx軸上運動,在坐標平面內作點D,使AD=CD,∠ADC=120°,連結OD,則OD的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了改善辦公條件,計劃從廠家購買A、B兩種型號電腦。已知每臺A種型號電腦價格比每臺B種型號電腦價格多0.1萬元,且用10萬元購買A種型號電腦的數(shù)量與用8萬元購買B種型號電腦的數(shù)量相同.

1)求A、B兩種型號電腦每臺價格各為多少萬元?

2)學校預計用不多于9.2萬元的資金購進這兩種電腦共20臺,則最多可購買A種型號電腦多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC,(1)如圖①,若P點是∠ABC和∠ACB的角平分線的交點,則∠P90°A(2)如圖②,若P點是∠ABC和外角∠ACE的角平分線的交點,則∠P90°-∠A(3)如圖③,若P點是外角∠CBF和∠BCE的角平分線的交點,則∠P90°A.上述說法正確的個數(shù)是(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

同步練習冊答案