【題目】為了了解某市中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統(tǒng)計表和統(tǒng)計圖,如圖所示,
組別 | 分數(shù)段(分) | 頻數(shù) | 頻率 |
A組 | 30 | 0.1 | |
B組 | 90 | ||
C組 | 0.4 | ||
D組 | 60 | 0.2 |
請根據(jù)圖表信息解答下列問題:
(1)在表中: , ;
(2)補全頻數(shù)分布直方圖;
(3)小明的成績是所有被抽查學生的中位數(shù),據(jù)此推斷他的成績在 組;
(4)4個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A、C兩組學生的概率是多少?并列表或畫樹狀圖說明.
【答案】(1)m=120,n=0.3(2)見解析(3)C(4)
【解析】分析:(1)先根據(jù)A組頻數(shù)及其頻率求得總人數(shù),再根據(jù)頻率=頻數(shù)÷總人數(shù)可得m、n的值;
(2)根據(jù)(1)中所求結果即可補全頻數(shù)分布直方圖;
(3)根據(jù)中位數(shù)的定義即可求解;
(4)畫樹狀圖列出所有等可能結果,再找到抽中A、C的結果,根據(jù)概率公式求解可得.
詳解:(1)(1)∵本次調查的總人數(shù)為30÷0.1=300(人),
∴m=300×0.4=120,n=90÷300=0.3,
故答案為:120,0.3;
(2)如圖所示
(3)(3)由于共有300個數(shù)據(jù),則其中位數(shù)為第150、151個數(shù)據(jù)的平均數(shù),
而第150、151個數(shù)據(jù)的平均數(shù)均落在C組,
∴據(jù)此推斷他的成績在C組,
故答案為:C;
(4)樹狀圖如下:
由樹狀圖可得,共有12種等可能情況,其中抽到A、C兩組同學的情況有2種.
∴抽中A、C兩組同學的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上線段AB=2(單位長度),線段CD=4(單位長度),點A在數(shù)軸上表示的數(shù)是-10,點C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個單位長度的速度向右勻速運動,同時線段CD以每秒2個單位長度的速度向左勻速運動.設運動時間為t s.
(1)當點B與點C相遇時,點A、點D在數(shù)軸上表示的數(shù)分別為________;
(2)當t為何值時,點B剛好與線段CD的中點重合;
(3)當運動到BC=8(單位長度)時,求出此時點B在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名射擊選手在10次射擊訓練中的成績統(tǒng)計圖(部分)如圖所示:
教練根據(jù)甲、乙兩名射擊選手的成績繪制了如下數(shù)據(jù)分析表:
選手 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 8 | c | |
乙 | 7. 5 | 6和9 | 2. 65 |
根據(jù)以上信息,請解答下面的問題:
(1)補全甲選手10次成績頻數(shù)分布圖;
(2)求的值;
(3)教練根據(jù)兩名選手的10次成績,決定選擇甲選手參加射擊比賽,教練的理由是什么?(至少從兩個不同角度說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,將筆記本活頁一角折過去,使角的頂點A落在處,BC為折痕。
(1)圖①中,若∠1=30°,求∠的度數(shù);
(2)如果又將活頁的另一角斜折過去,使BD邊與BA重合,折痕為BE,如圖②所示,∠1=30°,求∠2以及∠的度數(shù);
(3)如果在圖②中改變∠1的大小,則的位置也隨之改變,那么問題(2)中∠的大小是否改變?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D在BC上,BD=DC,過點D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點.
(1)求證:AB是⊙O的直徑;
(2)判斷DE與⊙O的位置關系,并加以證明;
(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中:①過一點有且只有一條直線與已知直線平行;②過一點有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結、兩點的線段就是、兩點之間的距離,其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,BC=AC=3,點D是BC邊上一點,∠DAC=30°,點E是AD邊上一點,CE繞點C逆時針旋轉90°得到CF,連接DF,DF的最小值是___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com