【題目】如圖,一個(gè)斜邊長為10cm的紅色三角形紙片,一個(gè)斜邊長為6cm的藍(lán)色三角形紙片,一張黃色的正方形紙片,拼成一個(gè)直角三角形,則紅、藍(lán)兩張紙片的面積之和是( 。
A. 60cm2 B. 50cm2 C. 40cm2 D. 30cm2
【答案】D
【解析】分析:標(biāo)注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積計(jì)算即可得解.
如圖,∵正方形的邊DE∥CF,
∴∠B=∠AED,
∵∠ADE=∠EFB=90°,
∴△ADE∽△EFB,
∴,
∴,
設(shè)BF=3a,則EF=5a,
∴BC=3a+5a=8a,
AC=8a×=a,
在Rt△ABC中,AC2+BC2=AB2,
即(a)2+(8a)2=(10+6)2,
解得a2=,
紅、藍(lán)兩張紙片的面積之和=×a×8a-(5a)2,
=a2-25a2,
=a2,
=×,
=30cm2.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蒙蒙和貝貝都住在M小區(qū),在同一所學(xué)校讀書.某天早上,蒙蒙7:30從M小區(qū)站乘坐校車去學(xué)校,途中?苛藘蓚(gè)站點(diǎn)才到達(dá)學(xué)校站點(diǎn),且每個(gè)站點(diǎn)停留2分鐘,校車在每個(gè)站點(diǎn)之間行駛速度相同;當(dāng)天早上,貝貝7:38從M小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,結(jié)果比蒙蒙乘坐的校車早2分鐘到學(xué)校站點(diǎn).他們乘坐的車輛從M小區(qū)站出發(fā)所行駛路程y(千米)與校車離開M小區(qū)站的時(shí)間x(分)之間的函數(shù)圖象如圖所示.
(1)求圖中校車從第二個(gè)站點(diǎn)出發(fā)時(shí)點(diǎn)B的坐標(biāo);
(2)求蒙蒙到達(dá)學(xué)校站點(diǎn)時(shí)的時(shí)間;
(3)求貝貝乘坐出租車出發(fā)后經(jīng)過多少分鐘追上蒙蒙乘坐的校車,并求此時(shí)他們距學(xué)校站點(diǎn)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交AD于F,交BC于G,延長BA交圓于E.
(1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件不變的情況下,若GC=CD,求∠C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)12﹣(﹣16)+(﹣4)﹣5
(2)
(3)
(4)(8a-7b)-(4a-5b)
(5)
(6)先化簡再求值,, 其中
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在斜坡的頂部有一鐵塔AB,B是CD的中點(diǎn),CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=18 m,小明和小華的身高都是1.6m,同一時(shí)刻,小明站在點(diǎn)E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m和1m,那么塔高AB為( )
A. 24m B. 22m C. 20m D. 18m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;
④若b=2a+c,則方程有兩個(gè)不相等的實(shí)根.其中正確的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電信檢修小組從A地出發(fā),在東西向的公路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:km)
(1)求收工時(shí)距A地多遠(yuǎn)?
(2)在第幾次紀(jì)錄時(shí)距A地最遠(yuǎn)?
(3)若每km耗油0.2升,問共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是單位長度為1的正方形網(wǎng)格,若A,B兩點(diǎn)的坐標(biāo)分別為,.
請解決下列問題:
(1)在網(wǎng)格圖中畫出平面直角坐標(biāo)系,并直接寫出點(diǎn)C的坐標(biāo)_________.
(2)將圖中三角形ABC沿x軸向右平移1個(gè)單位,再沿y軸向上平移2個(gè)單位后得到三角形,則的坐標(biāo)為_________;的坐標(biāo)為_________;的坐標(biāo)為_________;
(3)在y軸上是否存在點(diǎn)P,使得三角形的面積為4,若存在,請直接寫出P點(diǎn)坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com