【題目】鄭州市某中學(xué)體育場看臺(tái)的側(cè)面如圖陰影部分所示,看臺(tái)有四級(jí)高度相等的小臺(tái)階.已知看臺(tái)高為1.6米,現(xiàn)要做一個(gè)不銹鋼的扶手及兩根與垂直且長為1米的不銹鋼架桿和 (桿子的底端分別為),且,求所用不銹鋼材料的總長度.(即,結(jié)果精確到0.1米)參考數(shù)據(jù)()
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:,記為,它與軸交于點(diǎn),;將繞點(diǎn)旋轉(zhuǎn)得,交軸于點(diǎn);將繞點(diǎn)旋轉(zhuǎn)得,交軸于點(diǎn);…,如此進(jìn)行下去,直至得.
(1)請(qǐng)寫出拋物線的解析式:________;
(2)若在第10段拋物線上,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AC為直徑,MA,MB分別切⊙O于點(diǎn)A,B,過點(diǎn)B作BD⊥AC于點(diǎn)E,交⊙O于點(diǎn)D,若BD=MA,則∠AMB的大小為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),分別連接AC、CD、AD.
(1)求拋物線的函數(shù)表達(dá)式以及頂點(diǎn)D的坐標(biāo);
(2)在拋物線上取一點(diǎn)P(不與點(diǎn)C重合),并分別連接PA、PD,當(dāng)△PAD的面積與△ACD的面積相等時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中所求得的拋物線沿A、D所在的直線平移,平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D′,當(dāng)四邊形AA′C′C是菱形時(shí),求此時(shí)平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,已知A(–1,0),且直線BC的解析式為y=x-2,作垂直于x軸的直線,與拋物線交于點(diǎn)F,與線段BC交于點(diǎn)E(不與點(diǎn)B和點(diǎn)C重合).
(1)求拋物線的解析式;
(2)若△CEF是以CE為腰的等腰三角形,求m的值;
(3)點(diǎn)P為y軸左側(cè)拋物線上的一點(diǎn),過點(diǎn)P作交直線BC于點(diǎn)M,連接PB,若以P、M、B為頂點(diǎn)的三角形與△ABC相似,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE、CD 相交于點(diǎn) A,連接 BC,DE,下列條件中不能判斷△ABC∽ADE 的是( )
A. ∠B=∠D B. ∠C=∠E C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣11ax+24a交x軸于C,D兩點(diǎn),交y軸于點(diǎn)B(0,),過拋物線的頂點(diǎn)A作x軸的垂線AE,垂足為點(diǎn)E,作直線BE.
(1)求直線BE的解析式;
(2)點(diǎn)H為第一象限內(nèi)直線AE上的一點(diǎn),連接CH,取CH的中點(diǎn)K,作射線DK交拋物線于點(diǎn)P,設(shè)線段EH的長為m,點(diǎn)P的橫坐標(biāo)為n,求n與m之間的函數(shù)關(guān)系式.(不要求寫出自變量m的取值范圍);
(3)在(2)的條件下,在線段BE上有一點(diǎn)Q,連接QH,QC,線段QH交線段PD于點(diǎn)F,若∠HFD=2∠FDO,∠HQC=90°∠FDO,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線CF交BD延長線于點(diǎn)C.
(Ⅰ)若∠C=25°,求∠BAF的度數(shù);
(Ⅱ)若AB=AC,CD=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠DAC=90°,△ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點(diǎn)E.
(1)如圖1,猜想∠QEP= °;
(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時(shí),其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;
(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com