【題目】如圖,在正方形ABCD中,AB8厘米,如果動點P在線段AB上以2厘米/秒的速度由A點向B點運動,同時動點Q在以1厘米/秒的速度線段BC上由C點向B點運動,當點P到達B點時整個運動過程停止.設運動時間為t秒,當AQDP時,t的值為_____秒.

【答案】2

【解析】

先證△ADP≌△BAQ,得到AP=BQ,然后用t表示出APBQ,列出方程解出t即可.

因為AQPD,所以∠BAQ+APD=90°

又因為正方形性質可到∠APD+ADP=90°,∠PAD=B=90°,AB=AD

所以得到∠BAQ=ADP

又因為∠PAD=B=90°,AB=AD

所以△ADP≌△BAQ,得到AP=BQ

AP=2tQC=t,BC=8-t

所以2t=8-2t,解得t=2s

故填2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)

(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.

②設菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P和正方形給出如下定義:若正方形的對角線交于點O,四條邊分別和坐標軸平行,我們稱該正方形為原點正方形,當原點正方形上存在點Q,滿足PQ≤1時,稱點P為原點正方形的友好點.

(1)當原點正方形邊長為4時,

①在點P1(00),P2(-11),P3(32)中,原點正方形的友好點是__________;

②點P在直線y=x的圖象上,若點P為原點正方形的友好點,求點P橫坐標的取值范圍;

(2)乙次函數(shù)y=-x+2的圖象分別與x軸,y軸交于點A,B,若線段AB上存在原點正方形的友好點,直接寫出原點正方形邊長a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是邊長為6的等邊△ABC三邊中垂線的交點,將△ABC繞點O逆時針方向旋轉180°,得到△A1B1C1,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個長方形紙片,邊長如圖所示,面積分別為.

1)①計算:______,______

②用“<”“=”“>”填空:______

2)若一個正方形紙片的周長與乙長方形的周長相等,面積為.

①該正方形的邊長是______(用含的代數(shù)式表示);

②小方同學發(fā)現(xiàn):的差與無關.請判斷小方的發(fā)現(xiàn)是否正確,并通過計算說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線過點A(2,0),B(﹣1,0),與y軸交于點C,且OC=2,求這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖數(shù)軸上AB、C三點對應的數(shù)分別是a、b7,滿足,,P為數(shù)軸上一動點,PA出發(fā),沿數(shù)軸正方向以每秒個單位長度的速度勻速運動,Q從點C出發(fā)在射線CA上向點A勻速運動,P、Q兩點同時出發(fā).

1)求ab的值

2)當P運動到線段OB的中點時,Q運動的位置恰好是線段AB靠近點B的三等分點,求點Q的運動速度

3)在的條件下,P、Q兩點間的距離是6個單位長度時,OP的長.

查看答案和解析>>

同步練習冊答案