【題目】如圖,在矩形中,,相交于點(diǎn),平分交于點(diǎn),若,則________.
【答案】
【解析】
判斷出△ABE是等腰直角三角形,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠ACB=30°,再判斷出△ABO是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出OB=AB,再求出OB=BE,然后根據(jù)等腰三角形兩底角相等求出∠BOE=75°,再根據(jù)∠AOE=∠AOB+∠BOE計(jì)算即可得解.
解:∵AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴∠AEB=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∵∠CAE=15°,
∴∠ACE=∠AEB-∠CAE=45°-15°=30°,
∴∠BAO=90°-30°=60°,
∵矩形中OA=OB,
∴△ABO是等邊三角形,
∴OB=AB,∠ABO=∠AOB=60°,
∴OB=BE,
∵∠OBE=∠ABC-∠ABO=90°-60°=30°,
∴∠BOE=(180°-30°)=75°,
∴∠AOE=∠AOB+∠BOE,
=60°+75°,
=135°.
故答案為:135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC邊長(zhǎng)是定值,點(diǎn)O是它的外心,過(guò)點(diǎn)O任意作一條直線(xiàn)分別交AB,BC于點(diǎn)D,E.將△BDE沿直線(xiàn)DE折疊,得到△B′DE,若B′D,B′E分別交AC于點(diǎn)F,G,連接OF,OG,則下列判斷錯(cuò)誤的是( 。
A. △ADF≌△CGE
B. △B′FG的周長(zhǎng)是一個(gè)定值
C. 四邊形FOEC的面積是一個(gè)定值
D. 四邊形OGB'F的面積是一個(gè)定值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的解析式是,則下列說(shuō)法正確的是( )
A. 拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn) B. 拋物線(xiàn)的頂點(diǎn)坐標(biāo)是 C. 該二次函數(shù)有最小值 D. 當(dāng)時(shí),隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)仔細(xì)觀(guān)察圖中等邊三角形圖形的變化規(guī)律,寫(xiě)出你發(fā)現(xiàn)關(guān)于等邊三角形內(nèi)一點(diǎn)到三邊距離的數(shù)學(xué)事實(shí):_____________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的對(duì)角線(xiàn)相交于點(diǎn),,.
求證:四邊形是菱形;
若,菱形的面積為,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,、分別是、的中點(diǎn),、分別是、的中點(diǎn).
求證:四邊形是菱形;
若,,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在中,,,垂足為點(diǎn),是外角的平分線(xiàn),,垂足為點(diǎn),連接交于點(diǎn).
求證:四邊形為矩形;
當(dāng)滿(mǎn)足什么條件時(shí),四邊形是一個(gè)正方形?并給出證明.
在的條件下,若,求正方形周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)分別為和的兩個(gè)正方形和并排放在一起,連結(jié)并延長(zhǎng)交于點(diǎn),交于點(diǎn),則
A. B. 2 C. 2 D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com