【題目】如圖,在△ABC中,AB=AC,AD是中線,且AC是DE的中垂線.
(1)求證:∠BAD=∠CAD;
(2)連接CE,寫出BD和CE的數(shù)量關系.并說明理由;
(3)當∠BAC=90°,BC=8時,在AD上找一點P,使得點P到點C與到點E的距離之和最小,并求出此時△BCP的面積.
【答案】(1)詳見解析;(2)BD=CE,理由詳見解析;(3)8
【解析】
(1)根據(jù)等腰三角形的性質(zhì)即可得到結論;
(2)根據(jù)AC垂直平分DE,可得CD=CE,又BD=CD即可證明;
(3)連接BE交AD于點P,此時PE+PC的值最。惹蟪AD的長,再證明△APE≌△DPB,得出PA=PD,求出PD即可得出△BCP的面積.
(1)證明:∵AB=AC,AD是中線,
∴∠BAD=∠CAD;
(2)解:BD=CE.理由如下:
∵AD是中線,∴BD=CD,
∵AC垂直平分DE,∴CD=CE,
∴BD=CE;
(3)解:連接BE,BE與AD的交點即為點P,
∵AB=AC,D為BC的中點,∴AD⊥BC,即AD垂直平分BC,
∴BP=CP,
∴PE+PC=PE+BP=BE,所以此時PE+PC的值最小.
∵AB=AC,∠BAC=90°,D為BC的中點,
∴AD⊥BC,∴∠ABC=∠ACB=45°=∠DAC=∠BAD,
∴AD=BD=CD=4,
由AC垂直平分DE得,AE=AD=BD,
∴∠ADE=90°-∠DAC=45°=∠AED,
∴∠DAE=90°,
∴∠PAE=∠BDP=90°,
又∠BPD=∠EPA,
∴△APE≌△DPB(AAS),
∴PA=PD=2,
∵PD⊥BC,
∴S△BCP=×8×2=8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P的坐標為(4,3),把點P繞坐標原點O逆時針旋轉(zhuǎn)90°后得到點Q.
(1)寫出點Q的坐標是 ;
(2)若把點Q向右平移m個單位長度,向下平移2m個單位長度后,得到的點Q′恰好落在第三象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的弦,OA⊥OD,AB,OD相交于點C,且CD=BD.
(1)判斷BD與圓O的位置關系,并證明你的結論;
(2)當OA=3,OC=1時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是△ABC的高線,CE是△ABC的角平分線,它們相交于點P.
(1)若∠B=40°,∠AEC=75°,求證:AB=BC;
(2)若∠BAC=90°,AP為△AEC邊EC上中線,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG 于點E,CF⊥AG于點F,則AE-GF的值為( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,點P為邊AB所在直線上一點,連結CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.
(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為 (填“真”或“假”)命題,并說明理由;
(2)如圖3,P是△ABC的BA延長線的一個 “好點”,若PC=4,PB=5,求AP的值;
(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數(shù)是甲工程隊單獨完成修路任務所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊每天各修路多少千米?
(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com