分析 (1)如圖1中,⊙O中,AB是直徑,點(diǎn)C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.設(shè)∠BAC=α,則sinα=$\frac{BC}{AB}$=$\frac{1}{3}$,可設(shè)BC=x,則AB=3x.利用面積法求出CD,在Rt△COD中,根據(jù)sin2α=$\frac{CD}{OC}$,計(jì)算即可.
(2)如圖2中,連接NO,并延長交⊙O于點(diǎn)Q,連接MQ,MO,過點(diǎn)M作MR⊥NO于點(diǎn)R.首先證明∠MON=2∠Q=2β,
在Rt△QMN中,由sinβ=$\frac{MN}{NQ}=\frac{3}{5}$,設(shè)MN=3k,則NQ=5k,易得OM=$\frac{1}{2}$NQ=$\frac{5}{2}k$,可得MQ=$\sqrt{Q{N^2}-M{N^2}}=4k$,由$\frac{1}{2}$•MN•MQ=$\frac{1}{2}$•NQ•MR,求出在Rt△MRO中,根據(jù)sin2β=sin∠MON=$\frac{MR}{OM}$,計(jì)算即可.
解答 解:(1)如圖1中,⊙O中,AB是直徑,點(diǎn)C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.設(shè)∠BAC=α,則sinα=$\frac{BC}{AB}$=$\frac{1}{3}$,可設(shè)BC=x,則AB=3x.
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{(3x)^{2}-{x}^{2}}$=2$\sqrt{2}$x,
∵$\frac{1}{2}$•AC•BC=$\frac{1}{2}$•AB•CD,
∴CD=$\frac{2\sqrt{2}}{3}$x,
∵OA=OC,
∴∠OAC=∠OCA=α,
∴∠COB=2α,
∴sin2α=$\frac{CD}{OC}$=$\frac{{4\sqrt{2}}}{9}$.
(2)如圖2中,連接NO,并延長交⊙O于點(diǎn)Q,連接MQ,MO,過點(diǎn)M作MR⊥NO于點(diǎn)R.
在⊙O中,∠NMQ=90°,
∵∠Q=∠P=β,∴∠MON=2∠Q=2β,
在Rt△QMN中,∵sinβ=$\frac{MN}{NQ}=\frac{3}{5}$,
∴設(shè)MN=3k,則NQ=5k,易得OM=$\frac{1}{2}$NQ=$\frac{5}{2}k$,
∴MQ=$\sqrt{Q{N^2}-M{N^2}}=4k$,
∵${S_{△NMQ}}=\frac{1}{2}MN•MQ=\frac{1}{2}NQ•MR$,
∴3k•4k=5k•MR
∴MR=$\frac{12}{5}k$,
在Rt△MRO中,sin2β=sin∠MON=$\frac{MR}{OM}=\frac{{\frac{12}{5}k}}{{\frac{5k}{2}}}=\frac{24}{25}$.
點(diǎn)評 本題考查圓綜合題、銳角三角函數(shù),等腰三角形的性質(zhì),圓周角定理、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,本題的突破點(diǎn)是找到兩倍角,屬于中考壓軸題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠DOE的度數(shù)不能確定 | B. | ∠AOD=∠EOC | ||
C. | ∠AOD+∠BOE=60° | D. | ∠BOE=2∠COD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | A(4,30°) | B. | B(2,90°) | C. | C(6,120°) | D. | D(3,240°) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 149 | B. | 150 | C. | 151 | D. | 152 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 86×102 | B. | 8.6×103 | C. | 86×103 | D. | 0.86×103 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com