【題目】某市教育局對某鎮(zhèn)實施教育精準(zhǔn)扶貧,為某鎮(zhèn)建中、小型兩種圖書室共30個.計劃養(yǎng)殖類圖書不超過2000本,種植類圖書不超過1600本.已知組建一個中型圖書室需養(yǎng)殖類圖書80本,種植類圖書50本;組建一個小型圖書室需養(yǎng)殖類圖書30本,種植類圖書60本.

1)符合題意的組建方案有幾種?請寫出具體的組建方案;

2)若組建一個中型圖書室的費用是2000元,組建一個小型圖書室的費用是1500元,哪種方案費用最低,最低費用是多少元?

【答案】1)有三種組建方案,具體見解析;(2)中型圖書室20個,小型圖書室10個,這種方案費用最低,最低費用是55000元.

【解析】試題分析:(1)設(shè)組建中型兩類圖書室x個、小型兩類圖書室(30﹣x個,由于組建中、小型兩類圖書室共30個,已知組建一個中型圖書室需養(yǎng)殖類圖書80本,種植類圖書50本;組建一個小型圖書室需養(yǎng)殖類圖書30本,種植類圖書60本,因此可以列出不等式組,解不等式組然后去整數(shù)即可求解.

2)根據(jù)(1)求出的數(shù),分別計算出每種方案的費用即可.

試題解析:解:(1)設(shè)組建中型兩類圖書室x個、小型兩類圖書室(30﹣x

由題意,得 ,化簡得 ,解這個不等式組,得20≤x≤22

由于x只能取整數(shù),x的取值是20,2122

當(dāng)x=20時,30﹣x=10;

當(dāng)x=21時,30﹣x=9;

當(dāng)x=22時,30﹣x=8

故有三種組建方案:

方案一,中型圖書室20個,小型圖書室10個;

方案二,中型圖書室21個,小型圖書室9個;

方案三,中型圖書室22個,小型圖書室8個.

2)方案一的費用是:2000×20+1500×10=55000(元);

方案二的費用是:2000×21+1500×9=55500(元);

方案三的費用是:2000×22+1500×8=56000(元);

故方案一費用最低,最低費用是55000

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列算式,你發(fā)現(xiàn)了什么規(guī)律?

12=12+22=;12+22+32 =; 12+22 +32 + 42 =

1)你能用一個算式表示這個規(guī)律嗎?

2)根據(jù)你發(fā)現(xiàn)的規(guī)律,計算下面算式的值;

12+22 +32 + … +82

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A為數(shù)軸上表示﹣3的點,將A點沿著數(shù)軸向右移動5個單位長度后到點B,點B表示的數(shù)為(  )

A.2B.2C.8D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點EAD邊上,點FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校落實新課改精神的情況,現(xiàn)以該校九年級二班的同學(xué)參加課外活動的情況為樣本,對其參加球類、繪畫類舞蹈類、音樂類棋類活動的情況進(jìn)行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖.

1)參加音樂類活動的學(xué)生人數(shù)為 人,參加球類活動的人數(shù)的百分比為

2)請把圖2(條形統(tǒng)計圖)補充完整;

3)該校學(xué)生共600人,則參加棋類活動的人數(shù)約為 ;

4)該班參加舞蹈類活動的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,GH表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3根火柴棒搭成1個三角形,接著用火柴棒按如圖所示的方式搭成2個三角形,再用火柴棒搭成3個三角形、4個三角形

(1)若這樣的三角形有6個時,則需要火柴棒   根.

(2)若這樣的三角形有n個時,則需要火柴棒   根.

(3)若用了2017根火柴棒,則可組成這樣圖案的三角形有   個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,電訊公司在由西向東埋設(shè)通訊電纜線,他們從點A埋設(shè)到點B時突然發(fā)現(xiàn)碰到了一個具有研究價值的古墓,不得不改變方向繞開古墓,結(jié)果改為沿南偏東40°方向埋設(shè)到點O,再沿古墓邊緣埋設(shè)到點C處,測∠BOC=60°.現(xiàn)要恢復(fù)原來的正東方向CD,則∠OCD應(yīng)等于多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),

C(3,4)

⑴ 作出與△ABC關(guān)于y軸對稱△A1B1C1,并寫出 三個頂點的坐標(biāo)為:A1 ),B1 ),C1 );

⑵ 在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標(biāo);

⑶ 在 y 軸上是否存在點 Q,使得SAOQ=SABC,如果存在,求出點 Q 的坐標(biāo),如果不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O 的半徑是2,直線l與⊙O 相交于A、B 兩點,M、N 是⊙O 上的兩個動點,且在直線l的異側(cè),∠AMB45°,則四邊形MANB 面積的最大值是

查看答案和解析>>

同步練習(xí)冊答案