【題目】如圖,在平面直角坐標系中,拋物線x軸交于A、B兩點(A在點B左側(cè)),與y軸交于點C,OB=1,∠OBC=60°

1)如圖1,求直線BC的解析式;

2)如圖1,線段AC上方拋物線上有一動點P,PDx軸于點H,交線段AC于點D,直線BGAC,交拋物線于點G,點F是直線BC上一動點,FEBCAC于點E,點Q是點A關(guān)于直線BG的對稱點,連接PE、QF.當線段PD取最大值時,求PE+EF+QF的最小值及點E的坐標;

3)如圖2,將BOC繞點O逆時針旋轉(zhuǎn)至B′O C′的位置,點B、C的對應點分別為點B′C′,點B′恰好落在BC上.將B′O C′沿直線AC平移,得到B′′O ′ C′′,點B′C′、O的對應點分別為點B′′、C′′、O ′,連接B ′ B′′B ′C′′,B ′B′′C′′是否能為等腰三角形?若能,請直接寫出所有符合條件的C′′的坐標;若不能,請說明理由.

【答案】1;(2PE+EF+QF最小值為 +2, E點坐標;(3)能,,,

【解析】

1)利用三角函數(shù)求出OC的長得到拋物線的解析式,求出圖象與x軸的交點,設直線BC解析式為:,即可將點B、C的坐標代入求出答案;

2)先求出直線AC的解析式,設點PD的坐標,根據(jù)PD最大求得點P的坐標,利用勾股定理的逆定理及對稱性得到△ABQ是等邊三角形,過點QQMx軸于點M,求出點Q的坐標,根據(jù)平移規(guī)律得到Q ′的坐標,連接P Q ′AC于點E,再利用勾股定理求出, 得到PE+EF+QF最小值= P Q ′+EF,由此求出答案;

3)根據(jù)點的位置分四種情況進行求解:①當=時,②當=時,③當時,④當時,分別求出點C′′的坐標.

1)在BOC 中,OB=1,∠OBC=60°

BC=2,OC=,

∴拋物線解析式為:

y=0,得,

解之得 , ,

A(3,0),B1,0),C0),

設直線BC解析式為:,經(jīng)過B1,0),C0,),

,

,

;

2)設直線AC解析式為:,經(jīng)過A(3,0),B1,0),得,

P點坐標為,則D點坐標為,

PD=

時,PD有最大值,

P點坐標為

RAOC中,可以求出AC=2AB=4 ,

AC2+BC2=12+4=16=AB2

由勾股定理逆定理得,可得∠ACB=90°,

可得∠CAB=30°=ABG,

由對稱可得,AB=BQ=4, ABQ=30°+30°=60°,

ABQ是等邊三角形,

過點QQMx軸于點M

MB=4,OB=1

OM=1,QM=2

Q點坐標為(-1,-2

由題意得,四邊形BCEF是矩形,可得EF=BC=2,

Q點沿射線EF方向平移2個單位(向左平移1個單位,向上平移個單位),可得Q ′的坐標為(-2,-

連接P Q ′AC于點E,點E即為所求,

P Q ′=

PE+EF+QF最小值= P Q ′+EF= +2,

直線P Q的解析式為:

聯(lián)立,可得E點坐標

3)存在,

A(3,0)B1,0),C0),

OA=3,OB=1,OC=,

,,

∴∠ACB=90°,

∴∠CAB=30°,AC=2,

∴,

由旋轉(zhuǎn)得到,

,=,

∴四邊形是平行四邊形,

①將三角形向上平移,當=時,如圖1,延長y軸于D,

∴四邊形是菱形,

,

,

,

,

, ,

OD=OC+CD=,

;

②將三角形向下平移,當=時,如圖2,則四邊形是菱形,

過點,

,

=1,

∴點的橫坐標是,縱坐標是,

∴點的坐標是

③當時,如圖3,

,

∵∠ACB=90°,

,

延長y軸于D

,

,,

OD=OC+CD=,

∴點的坐標是;

④當時,如圖4,過點,

,

,

∴點的橫坐標是,縱坐標是,

∴點的坐標是

綜上,點的坐標是,,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2的圖象相交于點A(4,﹣2)B(m,4)

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)觀察圖象,寫出使得y1y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形EFGH的頂點EG分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.

1)求證:BG=DE

2)若EAD中點,FH=2,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汽車駕駛員坐在駕駛座位上,其視線觀察不到的地方叫汽車盲區(qū).如圖是一輛汽車的車頭盲區(qū)示意圖,其中ACBC,DEBC,駕駛員所處位置的高度AC1.4米,駕駛員座位AC與車頭DE之間距離為2米,當駕駛員從A點觀察車頭D點時,其視線的俯角為12°,點A、D、B在同一直線上.

1)請直接寫出∠ABC的度數(shù);

2)求車頭盲區(qū)B、E之間的距離.(結(jié)果精確到0.1米)參考數(shù)據(jù):sin12°0.20,cas12°0.99,tan12°0.21

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某天早晨,亮亮、悅悅兩人分別從A、B兩地同時出發(fā)相向跑步而行,途中兩人相遇,亮亮到達B地后立即以另一速度按原路返回.如圖是兩人離A地的距離y(米)與悅悅運動的時間x(分)之間的函數(shù)圖象,則亮亮到達A地時,悅悅還需要____________分到達A地.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,水庫大壩的橫斷面為四邊形ABCD,其中ADBC,壩頂BC=10米,壩高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角為30°.

(1)求壩底AD的長度(結(jié)果精確到1米);

2若壩長100米,求建筑這個大壩需要的土石料(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電腦系統(tǒng)中有個掃雷游戲,要求游戲者標出所有的雷,游戲規(guī)則:一個方塊下面最多埋一個雷,如果無雷,掀開方塊下面就標有數(shù)字,提醒游戲者此數(shù)字周圍的方塊(最多八個)中雷的個數(shù)(實際游戲中,0通常省略不標,為方便大家識別與印刷,我把圖乙中的0都標出來了,以示與未掀開者的區(qū)別),如圖甲中的“3”表示它的周圍八個方塊中僅有3個埋有雷.圖乙是張三玩游戲中的局部,圖中有4個方塊己確定是雷(方塊上標有旗子),則圖乙第一行從左數(shù)起的七個方塊中(方塊上標有字母),能夠確定一定是雷的有

   .(請?zhí)钊敕綁K上的字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AB1,在線段BC上取一點E,連接AE、ED,將△ABE沿AE翻折,使點B落在B'處,線段EB'AD于點F.將△ECD沿DE翻折,使點C的對應點C'落在線段EB'上,且點C'恰好為EB'的中點,則線段EF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點(點在點的左側(cè)),與軸交于點,且,頂點為

1)求二次函數(shù)的解析式;

2)點為線段上的一個動點,過點軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;

3)探索:線段上是否存在點,使為等腰三角形?如果存在,求出點的坐標;如果不存在,請說呀理由.

查看答案和解析>>

同步練習冊答案