【題目】某天,一蔬菜經(jīng)營戶用 1200 元錢按批發(fā)價從蔬菜批發(fā)市場買了西紅柿和豆角共 400 kg,然后在市場上按零售價出售,西紅柿和豆角當天的批發(fā)價和零售價如表所示:

品名

西紅柿

豆角

批發(fā)價(單位:元/kg

2.4

3.2

零售價(單位:元/kg

3.8

5.2

1)該經(jīng)營戶所批發(fā)的西紅柿和豆角的質量分別為多少 kg?

2)如果西紅柿和豆角全部以零售價售出,他當天賣出這些西紅柿和豆角賺了多少錢?

【答案】(1);(2)當天賣這些西紅柿和豆角賺了

【解析】

1)設該經(jīng)營戶批發(fā)西紅柿,批發(fā)豆角.根據(jù)題意列出二元一次方程組,解方程組即可得到答案;

2)根據(jù)利潤=零售額成本,即可求出當天的利潤.

解:設該經(jīng)營戶批發(fā)西紅柿,批發(fā)豆角

由題意得:,

解得:

答:該經(jīng)營戶批發(fā)西紅柿,批發(fā)豆角.

(元);

答:當天賣這些西紅柿和豆角賺了元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCCDE都是等邊三角形,BC,D三點在一條直線上,ADBE交于點P,ACBE交于點M,ADCE交于點N,連接MN,則下列五個結論:①AD=BE;②∠BMC=ANE;③∠APM=60°;④AN=BM;⑤△CMN是等邊三角形.其中一定正確的是__________.(填出所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018330日初2018級同學以優(yōu)異的成績在雙福育才中學完成了中招體育測試,初2019級為了準備明年的體考,對1、2、3、4進行了體考模擬測試,并對三個班的滿分進行了統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中2班體育成績滿分人數(shù)對應的圓心角是   度;并補全條形統(tǒng)計圖;

(2)經(jīng)過體育老師推薦,這些滿分同學中有4名同學(13男)的跳遠動作十分標準,12班班主任準備從這4名同學中任選2名給自己班級的同學示范標準動作,請利用畫樹狀圖或列表的方法求出選出2名同學恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC,BD相交于點O,AC6,BD8,∠AOD65°,點EBO上,AFCEBD于點F

1)求證:四邊形AFCE是平行四邊形.

2)當點E在邊BO上移動時,平行四邊形AFCE能否為矩形?若能,此時BE的長為多少(直接寫出結果)?若不能,請說明理由.

3)當點E在邊BO上移動時,平行四邊形AFCE能否為菱形?若能,此時BE的長為多少(直接寫出結果)?若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A.B.C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.

(1)求證:AP是⊙O的切線;

(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點.

(1)如圖1,過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大小;

(2)如圖2,D為上一點,且OD經(jīng)過AC的中點E,連接DC并延長,與AB的延長線相交于點P,若∠CAB=10°,求∠P的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正方形ABCD的頂點Dy軸上,A(﹣3,0),B1,b),則正方形ABCD的面積為( 。

A.34B.25C.20D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)在等腰三角形ABC,∠A130°,求∠B的度數(shù)

2)在等腰三角形ABC中,∠A40°,求∠B的度數(shù).

3)根據(jù)(1)(2)問后發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個數(shù)也可能不同,如果在等腰三角形ABC中,設∠Ax°,當∠B有三個不同的度數(shù)時,請你探索x的取值范圍,并用含x的式子表示∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點AD、CF在同一條直線上,ABDE,∠A=∠EDF,再添加一個條件,可使△ABC DEF,下列條件不符合的是

A.B=∠EB.BCEFC.ADCFD.ADDC

查看答案和解析>>

同步練習冊答案