【題目】如圖所示,已知:在菱形ABCD中,E、F分別是BC,CD上的點,且CE=CF

(1)求證:△ABE≌△ADF

(2)過點CCGEAAF于點H,交AD于點G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).

【答案】1)見解析;(2100°

【解析】

1)首先利用菱形的性質(zhì)和CE=CF得出BE=DF,進而得出ABE≌△ADF;

2)利用全等三角形的性質(zhì)得出∠BAE=DAF=25°,進而得出∠EAF的度數(shù),進而得出∠AHC的度數(shù).

(1)證明:在菱形ABCD,BC=CD=AB=AD,B=D(菱形的性質(zhì)),

CE=CF

BCCE=CDCF,

BE=DF,

ABEADF

,

∴△ABE≌△ADF(SAS);

(2)∵△ABE≌△ADF(已證),BAE=25°,

∴∠BAE=DAF=25°,

在菱形ABCD

BAD=BCD=130°(菱形對角相等)

∴∠EAF=BADBAEDAF=130°25°25°=80°,

AECG,

∴∠EAF+AHC=180°

∴∠AHC=180°EAF=180°80°=100°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A在y軸正半軸上,邊AB、OA(AB>OA)的長分別是方程x2﹣11x+24=0的兩個根,D是AB上的點,且滿足

(1)矩形OABC的面積是   ,周長是   

(2)求直線OD的解析式;

(3)點P是射線OD上的一個動點,當△PAD是等腰三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過點A0,4)的拋物線y=x2+bx+cx軸相交于點B10)和C,O為坐標原點.

(1)求拋物線的解析式;

2)將拋物線y=x2+bx+c向上平移7個單位長度,再向左平移mm0)個單位長度,得到新拋物線,若新拋物線的頂點PABC內(nèi),求m的取值范圍;

(3)將x軸下方的拋物線圖象關(guān)于x軸對稱,得到新的函數(shù)圖象C,若直線y=x+k與圖象C始終有3個交點,求滿足條件的k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ECAB,EDA=ABF.

(1)求證:四邊形ABCD是平行四邊形;

(2)圖中存在幾對相似三角形?分別是什么?請直接寫出來不必證明;

(3)求證:OA2=OEOF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣(x+1)(x﹣3)與x軸交于A、B兩點,與y軸交于點C,點D為該拋物線的對稱軸上一點,當點D到直線BC和到x軸的距離相等時,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BEAD于點F.

(1)求證:△BDF是等腰三角形;

(2)如圖2,過點DDGBE,交BC于點G,連接FGBD于點O.

①判斷四邊形BFDG的形狀,并說明理由;

②若AB=6AD=8,求FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:,

)先化簡再求值:(其中,).

)若的結(jié)果與的取值無關(guān),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校260名學生參加植樹活動,要求每人植樹4~7棵,活動結(jié)束后隨機抽查了20名學生每人的植樹量,并分為四種類型,A4棵;B5棵;C6棵;D7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認扇形圖是正確的,而條形圖尚有一處錯誤.

回答下列問題:

1)寫出條形圖中存在的錯誤,并說明理由;

2)寫出這20名學生每人植樹量的眾數(shù)和中位數(shù);

3)求這20名學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄭老師想為希望小學四年(3)班的同學購買學習用品,了解到某商店每個書包的價格比每本詞典多8元,用124元恰好可以買到3個書包和2本詞典.

1)每個書包和每本詞典的價格各是多少元?

2)鄭老師有1000元,他計劃為全班40位同學每人購買一件學習用品(一個書包或一本詞典)后,余下不少于100元且不超過120元的錢購買體育用品,共有哪幾種購買書包和詞典的方案?

查看答案和解析>>

同步練習冊答案