【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.
【答案】(1)見解析;(2)①菱形,見解析;②.
【解析】
(1)根據(jù)兩直線平行內錯角相等及折疊特性判斷;
(2)①根據(jù)已知矩形性質及第一問證得鄰邊相等判斷;
②根據(jù)折疊特性設未知邊,構造勾股定理列方程求解.
(1)證明:如圖1,根據(jù)折疊,∠DBC=∠DBE,
又AD∥BC,
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,
∴DF=BF,
∴△BDF是等腰三角形;
(2)①∵四邊形ABCD是矩形,
∴AD∥BC,
∴FD∥BG,
又∵DG∥BE
∴四邊形BFDG是平行四邊形,
∵DF=BF,
∴四邊形BFDG是菱形;
②∵AB=6,AD=8,
∴BD=10.
∴OB= BD=5.
假設DF=BF=x,∴AF=ADDF=8x.
∴在直角△ABF中,AB+AF=BF,即6+(8x) =x,
解得x= ,
即BF=,
∴FO=,
∴FG=2FO=
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程
(1)25x2+10x+1=0(公式法) (2) 7x2 -23x +6=0;(配方法)
(3) (分解因式法) (4)x2-4x-396=0(適當?shù)姆椒ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:⊙O的半徑為25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求這兩條平行弦AB,CD之間的距離______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知:在菱形ABCD中,E、F分別是BC,CD上的點,且CE=CF.
(1)求證:△ABE≌△ADF;
(2)過點C作CG∥EA交AF于點H,交AD于點G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC、BD相交于點O,點P是線段AD上一動點(不與與點D重合),PO的延長線交BC于Q點.
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=6cm,AD=8cm,P從點A出發(fā).以1cm/秒的速度向點D勻速運動.設點P運動時間為t秒,問四邊形PBQD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,長為60km的某段線路AB上有甲、乙兩車,分別從南站A和北站B同時出發(fā)相向而行,到達B、A后立刻返回到出發(fā)站停止,速度均為30km/h,設甲車,乙車距南站A的路程分別為y甲,y乙(km)行駛時間為t(h).
(1)圖2已畫出y甲與t的函數(shù)圖象,其中a= ,b= ,c= .
(2)分別寫出0≤t≤2及2<t≤4時,y乙與時間t之間的函數(shù)關系式.
(3)在圖2中補畫y乙與t之間的函數(shù)圖象,并觀察圖象得出在整個行駛過程中兩車相遇的次數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式及其驗證過程:
,驗證:.
,驗證:.
(1)按照上述兩個等式及其驗證過程,猜想的變形結果并進行驗證;
(2)針對上述各式反映的規(guī)律,寫出用(為自然數(shù),且)表示的等式,并進行驗證;
(3)用(為任意自然數(shù),且)寫出三次根式的類似規(guī)律,并進行驗證.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校課外興趣小組在本校學生中開展“垃圾分類”知曉情況專題調查活動,采取隨機抽樣的方式進行向卷調查,問卷調查的結果分為A、B、C、D四類,其中,A 類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,學生可根據(jù)自己的情況任途其中一類,學校根據(jù)調查情況進行了統(tǒng)計,并制成了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖:
(1)本次共調查了學生_____人,被調查的學生中,類別為C的學生有_____人;
(2)求類別為A的學生數(shù),并補全條形統(tǒng)計圖;
(3)求扇形統(tǒng)計圖中類別為 D的學生數(shù)所對應的圓心角的度數(shù);
(4)若該校有學生 1000名,根據(jù)調查結果估計該校學生中對“垃圾分類”知識“非常了解”和“比較了解”的人數(shù)一共約為多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com