【題目】如圖,AD是Rt△ABC斜邊BC上的高.
(1)尺規(guī)作圖:作∠C的平分線,交AB于點E,交AD于點F(不寫作法,必須保留作圖痕跡,標(biāo)上應(yīng)有的字母);
(2)在(1)的條件下,過F畫BC的平行線交AC于點H,線段FH與線段CH的數(shù)量關(guān)系如何?請予以證明;
(3)在(2)的條件下,連結(jié)DEDH.求證:ED⊥HD.
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】分析:
(1)按作角的平分線的尺規(guī)作圖方法作出相應(yīng)的圖形,并標(biāo)上相應(yīng)的字母即可;
(2)如圖2,由已知條件易得∠1=∠2,∠1=∠3,從而可得∠2=∠3,由此即可得到FH=CH;
(3)如圖3,由已知條件易證∠4=∠5,從而可得AE=AF,由FH∥CD可得△AFH∽△ADC,由此可得結(jié)合FH=CH,AE=AF可得,再證∠EAD=∠HCD,即可得到△EAD∽△HCD,從而可得∠7=∠8,結(jié)合AD⊥BC即可得到∠EDH=90°,由此即可得到DE⊥DH.
詳解:
(1)如下圖1所示,線段CE為所求的△ABC的角平分線;
(2)FH=CH,理由如下:
如圖2,∵FH∥BC,
∴∠1=∠3,
∵CE平分∠ACB,
∴∠1=∠2,
∴∠2=∠3,
∴FH=CH(等角對等邊);
(3)如圖3,∵EA⊥CA,
∴∠EAC=90°,
∴∠2+∠5=90°,
∵AD⊥DC,
∴∠ADC=90°,
∴∠1+∠6=90°,
∴∠2+∠5=∠1+∠6,
又∵∠1=∠2,
∴∠5=∠6,
∵∠6=∠4,
∴∠5=∠4,
∴AE=AF(等角對等邊),
∵FH∥BC,
∴AFH∽△ADC,
∴=,
∵FH=CH,
∴得=,
∵∠EAD+∠DAC=90°,∠HCD+∠DAC=90°,
∴∠EAD=∠HCD,
∴△EAD∽△HCD(兩邊對應(yīng)成比例且夾角相等的兩個三角形相似),
∴∠7=∠8,
∵∠8+∠HDA=90°,
∴∠7+∠HDA=90°,即∠EDH=90°,
∴ED⊥HD
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016四川省成都市)如圖,在平面直角坐標(biāo)xOy中,正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點A(2,﹣2).
(1)分別求這兩個函數(shù)的表達(dá)式;
(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內(nèi)的交點為C,連接AB,AC,求點C的坐標(biāo)及△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知ABC 在平面直角坐標(biāo)系中的位置如圖(注: A、B、C 均在格點上)
(1)請在圖中作出ABC 關(guān)于 y 軸對稱的A1B1C1 ,并直接寫出A1B1C1 頂點的坐標(biāo);
(2)求A1B1C1 的面積;
(3)再將A1B1C1 向下平移 4 個單位長度,得到A2 B2C2 ,若點 M m, n 是ABC 上一點,請直接寫出 M 在A2 B2C2 上對應(yīng)點 M 2 的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(﹣3)+40+(﹣32)+(﹣8)
(2)12﹣(﹣18)+(﹣7)
(3)(+3)﹣(﹣5)+(﹣2)﹣(﹣32)
(4)81.26﹣293.8+8.74+111
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下表,回答問題:
x | … | -2 | -1 | 0 | 1 | 2 | … |
-2x+5 | … | 9 | 7 | 5 | 3 | a | … |
2x+8 | … | 4 | 6 | 8 | 10 | b | … |
(初步感知)
(1)a= ;b= ;
(歸納規(guī)律)
(2)隨著x值的變化,兩個代數(shù)式的值變化規(guī)律是什么?
(問題解決)
(3)比較-2x+5與2x+8的大;
(4)請寫出一個含x的代數(shù)式,要求x的值每增加1,代數(shù)式的值減小5,當(dāng)x=0時,
代數(shù)式的值為-7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個問題解決往往經(jīng)歷發(fā)現(xiàn)猜想——探索歸納——問題解決的過程,下面結(jié)合一道幾何題來體驗一下.
(發(fā)現(xiàn)猜想)(1)如圖①,已知∠AOB=70°,∠AOD=100°,OC為∠BOD的角平分線,則∠AOC的度數(shù)為 ;.
(探索歸納)(2)如圖①,∠AOB=m,∠AOD=n,OC為∠BOD的角平分線. 猜想∠AOC的度數(shù)(用含m、n的代數(shù)式表示),并說明理由.
(問題解決)(3)如圖②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射線OB繞點O以每秒20°逆時針旋轉(zhuǎn),射線OC繞點O以每秒10°順時針旋轉(zhuǎn),射線OD繞點O每秒30°順時針旋轉(zhuǎn),三條射線同時旋轉(zhuǎn),當(dāng)一條射線與直線OA重合時,三條射線同時停止運(yùn)動. 運(yùn)動幾秒時,其中一條射線是另外兩條射線夾角的角平分線?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)為了了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:
(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請將兩個統(tǒng)計圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該中學(xué)有1500名學(xué)生,請估計該校喜愛電視劇節(jié)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結(jié)論有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com