【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米時的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示,求兩車在途中第二次相遇時t的值_____

【答案】5.25

【解析】

由圖象的數(shù)量關(guān)系,由速度=路程÷時間可求a=40;先由圖象條件求出行駛后面路程的時間,然后可求出維修用的時間;先由圖象條件求出行駛后面路程的時間,然后可求出維修用的時間由圖象求出BCEF的解析式,然后由其解析式構(gòu)成二元一次方程組就可以求出t的值.

由函數(shù)圖象,得a=120÷3=40
5.5-3-120÷(40×2),
=2.5-1.5,
=1.
則甲車維修的時間為1小時,
如圖:


∵甲車維修的時間是1小時,
∴B(4,120).
∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達(dá).
∴E(5,240).
∴乙行駛的速度為:240÷3=80,
∴乙返回的時間為:240÷80=3,
∴F(8,0).
設(shè)BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象,得

, ,
解得 , ,
∴y1=80t-200,y2=-80t+640,
當(dāng)y1=y2時,
80t-200=-80t+640,
t=5.25.
∴兩車在途中第二次相遇時t的值為5.25.
故答案為:5.25.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=30°,BC=2.ABC繞點C按順時針方向旋轉(zhuǎn)n度后得到EDC,此時點D落在AB邊上,斜邊DEAC于點F,則n的大小和圖中陰影部分的面積分別為(

A. 30,2 B. 60,2 C. 60, D. 60,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.

(1)問原來規(guī)定修好這條公路需多少長時間?

(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當(dāng)施工費用最低時,甲、乙各施工了多少個月?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校需要招聘一名教師,對三名應(yīng)聘者進(jìn)行了三項素質(zhì)測試下面是三名應(yīng)聘者的綜合測試成績:

應(yīng)聘者

成績

項目

A

B

C

基本素質(zhì)

70

65

75

專業(yè)知識

65

55

50

教學(xué)能力

80

85

85

(1)如果根據(jù)三項測試的平均成績確定錄用教師,那么誰將被錄用?

(2)學(xué)校根據(jù)需要,對基本素質(zhì)、專業(yè)知識、教學(xué)能力的要求不同,決定按2:1:3的比例確定其重要性,那么哪一位會被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=30°,則∠E的度數(shù)為(
A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一節(jié)快到了,甲、乙兩家旅行社為了吸引更多的顧客,分別提出了赴某地旅游的團(tuán)體優(yōu)惠方法,甲旅行社的優(yōu)惠方法是:買4張全票,其余人按半價優(yōu)惠;乙旅行社的優(yōu)惠方法是:一律按7折優(yōu)惠,已知兩家旅行社的原價均為每人100元。(旅游人數(shù)超過4人)

(1)分別表示出甲旅行社收費y1 ,乙旅行社收費y2與旅游人數(shù)x的函數(shù)關(guān)系式.

(2)就參加旅游的人數(shù)討論哪家旅行社的收費更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A的坐標(biāo)為(﹣4,8),對角線AC⊥x軸于點C,點D在y軸上,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(﹣2,﹣4),直線x=﹣2與x軸相交于點B,連接OA,拋物線y=﹣x2從點O沿OA方向平移,與直線x=﹣2交于點P,頂點M到點A時停止移動.

(1)線段OA所在直線的函數(shù)解析式是;
(2)設(shè)平移后拋物線的頂點M的橫坐標(biāo)為m,問:當(dāng)m為何值時,線段PA最長?并求出此時PA的長.
(3)若平移后拋物線交y軸于點Q,是否存在點Q使得△OMQ為等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一根起點為1的數(shù)軸,現(xiàn)有同學(xué)將它彎折,彎折后虛線上第一行的數(shù)是1,第二行的數(shù)是13,第三行的數(shù)是43,…,依此規(guī)律,第五行的數(shù)是( )

A. 183 B. 157 C. 133 D. 91

查看答案和解析>>

同步練習(xí)冊答案