【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.

(1)問原來規(guī)定修好這條公路需多少長時間?

(2)現(xiàn)要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結算方便,要求:甲、乙的施工時間為整數(shù)個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?

【答案】(1) 規(guī)定修好路的時間為12個月;(2)工費最低時,甲工作了6個月,乙工作9個月.

【解析】試題分析: 設規(guī)定修好路的時間為x個月,根據工作總量=工作效率工作時間列方程求解即可.

甲工作了a月,乙工作了月,列出不等式,求出的取值范圍,再分別計算施工費用進行比較即可.

試題解析:

(1)設規(guī)定修好路的時間為x個月,

解得:x=12.

檢驗:當x=12時,x(x+12)≠0.

∴原分子方程的解為x=12,且x=12滿足題意.

答:規(guī)定修好路的時間為12個月.

(2)甲工作了a月,乙工作了(a≤15,b≤15),

.

∴由①可得:b=181.5a ,

代入②中:0181.5a+a≤15,

6≤a12 ab均為整數(shù),

a=6,b=9,W1=4×6+9×2=42(萬元),

a=8b=6,W2=8×4+6×2=44(萬元),

a=10,b=3W3=10×4+3×2=46(萬元),

W1W2W3,

∴工費最低時,甲工作了6個月,乙工作9個月.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD,ABBC1,CDDA1,且∠B90°.求:

(1)BAD的度數(shù);

(2)四邊形ABCD的面積(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,E,F(xiàn)分別是OA,OC的中點,連接BE,DF

(1)根據題意,補全原形;
(2)求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 ,并求其整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖矩形ABCD的對角線ACBD相交于點O,延長CB到點E,使BEBC,連接AE.

(1)求證:四邊形ADBE是平行四邊形;

(2)AB4OB,求四邊形ADBE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富學生的校園生活,準備從友誼體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同、每個籃球的價格相同),若購買3個籃球和2個足球共需420元;購買2個籃球和4個足球共需440元.
(1)購買一個籃球、一個足球各需多少元?
(2)根據該中學的實際情況,需要從該體育用品商店一次性購買足球和籃球共20個.要求購買籃球數(shù)不少于足球數(shù)的2倍,總費用不超過1840元,那么這所中學有哪幾種購買方案?哪種方案所需費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、乙兩船從港口A同時出發(fā),甲船以30海里/時的速度向北偏東35°的方向航行,乙船以40海里/時的速度向另一方向航行,2小時后,甲船到達C,乙船到達B,C,B兩島相距100海里,則乙船航行的方向是南偏東多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為

(1)若是“相伴數(shù)對”,求的值;

(2)寫出一個“相伴數(shù)對” ,其中

(3)若是“相伴數(shù)對”,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個正方形邊長分別為a、b

1)求陰影部分的面積.

2)如果a+b=17ab=60,求陰影部分的面積.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/17/1904284875390976/1906414662729728/STEM/433f25b861984b60a78ae031a98667fa.png]

查看答案和解析>>

同步練習冊答案