【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣4,8),對角線AC⊥x軸于點(diǎn)C,點(diǎn)D在y軸上,求直線AB的解析式.
【答案】解:連接BD,過B點(diǎn)作BE⊥x軸,E為垂足, 由已知得AC=BD=8,
BE= AC=4,
故B點(diǎn)坐標(biāo)為(﹣8,4),
設(shè)直線AB的解析式為y=kx+b,則
,
解得 .
故直線AB的解析式為y=x+12.
【解析】根據(jù)正方形的性質(zhì)求出點(diǎn)B的坐標(biāo),即可用待定系數(shù)法求出直線AB解析式.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解確定一次函數(shù)的表達(dá)式(確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法),還要掌握正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,AC是⊙O的直徑,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延長線于點(diǎn)E.
(1)求證:△ABC∽△DEB;
(2)求證:BE是⊙O的切線;
(3)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“世界那么大,我想去看看”一句話紅遍網(wǎng)絡(luò),騎自行車旅行越來越受到人們的喜愛,各種品牌的山地自行車相繼投放市場.順風(fēng)車行經(jīng)營的A型車去年6月份銷售總額為3.2萬元,今年經(jīng)過改造升級后A型車每輛銷售價比去年增加400元,若今年6月份與去年6月份賣出的A型車數(shù)量相同,則今年6月份A型車銷售總額將比去年6月份銷售總額增加25%.
(1)求今年6月份A型車每輛銷售價多少元(用列方程的方法解答);
(2)該車行計(jì)劃7月份新進(jìn)一批A型車和B型車共50輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?
A、B兩種型號車的進(jìn)貨和銷售價格如表:
A型車 | B型車 | |
進(jìn)貨價格(元/輛) | 1100 | 1400 |
銷售價格(元/輛) | 今年的銷售價格 | 2400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米時的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示,求兩車在途中第二次相遇時t的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微信運(yùn)動和騰訊公益推出了一個愛心公益活動:一天中走路步數(shù)達(dá)到10000步及以上可通過微信運(yùn)動和騰訊基金會向公益活動捐款,如果步數(shù)在10000步及以上,每步可捐0.0002元;若步數(shù)在10000步以下,則不能參與捐款.
(1)老趙某天的步數(shù)為13000步,則他當(dāng)日可捐多少錢?
(2)已知甲、乙、丙三人某天通過步數(shù)共捐了8.4元,且甲的步數(shù)=乙的步數(shù)=丙步數(shù)的3倍,則丙走了多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側(cè),BD⊥AE于點(diǎn)D,CE⊥AE于點(diǎn)E.
(1)求證:BD=DE+CE;
(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖2位置時(BD<CE),其余條件不變,問BD與DE,CE的關(guān)系如何,請證明;
(3)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖3時(BD>CE),其余條件不變,BD與DE,CE的關(guān)系怎樣?請直接寫出結(jié)果,不須證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,∠B=60°,∠C=80°,點(diǎn)D,E分別在線段AB,BC 上, 將△BDE 沿直線DE翻折,使B落在B′ 處, B′ D, B′E分別交AC于F,G. 若∠ADF=70°,則∠CGE 的度數(shù)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com