【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P和點(diǎn)關(guān)于y軸對稱,點(diǎn)和點(diǎn)關(guān)于直線l對稱,則稱點(diǎn)是點(diǎn)P關(guān)于y軸,直線l的二次對稱點(diǎn).
如圖1,點(diǎn).
若點(diǎn)B是點(diǎn)A關(guān)于y軸,直線:的二次對稱點(diǎn),則點(diǎn)B的坐標(biāo)為______;
若點(diǎn)是點(diǎn)A關(guān)于y軸,直線:的二次對稱點(diǎn),則a的值為______;
若點(diǎn)是點(diǎn)A關(guān)于y軸,直線的二次對稱點(diǎn),則直線的表達(dá)式為______;
如圖2,的半徑為若上存在點(diǎn)M,使得點(diǎn)是點(diǎn)M關(guān)于y軸,直線:的二次對稱點(diǎn),且點(diǎn)在射線上,b的取值范圍是______;
是x軸上的動點(diǎn),的半徑為2,若上存在點(diǎn)N,使得點(diǎn)是點(diǎn)N關(guān)于y軸,直線:的二次對稱點(diǎn),且點(diǎn)在y軸上,求t的取值范圍.
【答案】(1)①B(3,0);②a=-2;③y=-x+2;(2);(3).
【解析】
根據(jù)二次對稱點(diǎn)的定義,分別畫出圖形,即可解決問題.
根據(jù)二次對稱點(diǎn)的定義,畫出圖形,求出b的最大值以及最小值即可解決問題.
如圖6中,設(shè)點(diǎn)E關(guān)于y軸的對稱點(diǎn)為,關(guān)于直線的對稱點(diǎn)為,易知當(dāng)點(diǎn)N在上運(yùn)動時(shí),點(diǎn)在上運(yùn)動,由此可見當(dāng)與y軸相切或相交時(shí)滿足條件想辦法求出點(diǎn)的坐標(biāo)即可解決問題.
解:如圖1中,點(diǎn)關(guān)于y軸的對稱點(diǎn),關(guān)于直線的對稱點(diǎn).
如圖2中,由題意,,、C關(guān)于直線對稱,
.
如圖3中,,,
直線的解析式為,線段的中垂線的解析式為,
直線的解析式為.
故答案分別為,.
如圖4中,
由題意,由此可知,當(dāng)的值最大時(shí),可得b的最大值,
直線的解析式為,
,
,易知,時(shí),的值最大,最大值為2,
的最大值為1,
如圖5中,易知當(dāng)點(diǎn)M在x軸的正半軸上時(shí),可得b的最小值,最小值為,
綜上所述,滿足條件的b取值范圍為.
故答案為.
如圖6中,設(shè)點(diǎn)E關(guān)于y軸的對稱點(diǎn)為,關(guān)于直線的對稱點(diǎn)為,易知當(dāng)點(diǎn)N在上運(yùn)動時(shí),點(diǎn)在上運(yùn)動,由此可見當(dāng)與y軸相切或相交時(shí)滿足條件.
連接交直線于K,易知直線的解析式為,
由解得,
,
,
,
當(dāng)與y軸相切時(shí),,解得或,
綜上所述,滿足條件的t的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2012年6月5日是“世界環(huán)境日”,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學(xué)的成績,制作成直方圖(如圖).
(1)分?jǐn)?shù)段在-----范圍的人數(shù)最多;
(2)全校共有多少人參加比賽?
(3)學(xué)校決定選派本次比賽成績最好的3人參加南寧市中學(xué)生環(huán)保演講決賽,并為參賽選手準(zhǔn)備了紅、藍(lán)、白顏色的上衣各1件和2條白色、1條藍(lán)色的褲子.請用“列表法”或“樹形圖法”表示上衣和褲子搭配的所有可能出現(xiàn)的結(jié)果,并求出上衣和能搭配成同一種顏色的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣4與x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線y=x+m經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D.
(1)求線段AD的長;
(2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C′.若新拋物線經(jīng)過點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC′平行于直線AD,求新拋物線對應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點(diǎn)為C(﹣1,﹣1),且經(jīng)過點(diǎn)A、點(diǎn)B和坐標(biāo)原點(diǎn)O,點(diǎn)B的橫坐標(biāo)為﹣3.
(1)求拋物線的解析式.
(2)求點(diǎn)B的坐標(biāo)及△BOC的面積.
(3)若點(diǎn)D為拋物線上的一點(diǎn),點(diǎn)E為對稱軸上的一點(diǎn),且以點(diǎn)A、O、D、E為頂點(diǎn)的四邊形為平行四邊形,請?jiān)谧筮叺膱D上標(biāo)出D和E的位置,再直接寫出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線 與雙曲線的一個交點(diǎn)為P(2,m),與x軸、y軸分別交于點(diǎn)A,B.
(1)求m的值;
(2)若PA=2AB,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點(diǎn).
求拋物線的函數(shù)表達(dá)式;
求拋物線的頂點(diǎn)坐標(biāo),直接寫出當(dāng)時(shí),x的取值范圍;
設(shè)點(diǎn)M是拋物線的頂點(diǎn),試判斷拋物線上是否存在點(diǎn)H滿足?若存在,請求出點(diǎn)H的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校開展“經(jīng)典誦讀”比賽活動,誦讀材料有《論語》、《大學(xué)》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時(shí)小禮先從中隨機(jī)抽取一張卡片,記下內(nèi)容后放回,洗勻后,再由小智從中隨機(jī)抽取一張卡片,他倆按各自抽取的內(nèi)容進(jìn)行誦讀比賽.
(1)小禮誦讀《論語》的概率是 ;(直接寫出答案)
(2)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點(diǎn)的坐標(biāo);
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請用實(shí)線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com